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Preface

The use of quantitative methods has grown tremendously in all areas of finance,
from trading to risk management, and accelerated through the financial crisis and
the advent of the big data era. Many of these methods require applying linear
algebra methods, for example, for solving linear systems when computing optimal
asset allocations, or for computing covariance and correlation matrices from time
series data.

This book covers numerical linear algebra methods required for financial engineering
applications. Many of these applications are included in the book, and pseudocodes
are provided for the numerical linear algebra methods.

Linear Algebra Topics

e LU and Cholesky decompositions and linear solvers

e Optimal solvers for tridiagonal symmetric positive matrices
e Linear Transformation Property

e Multivariate normal random variables

o Efficient cubic spline interpolation

e Ordinary least squares (OLS) and linear regression

e Gershgorin’s theorem and diagonal dominance

e Sylvester’s criterion for positive definiteness

Financial Applications

e The Arrow—Debreu one period market model

e One period index options arbitrage

¢ Covariance and correlation matrix estimation from time series data
o Ordinary least squares for implied volatility computation

e Minimum variance portfolios and maximum return portfolios

¢ Value at Risk and portfolio VaR

Every chapter concludes with exercises that are a mix of mathematical and financial
questions. Some of these exercises are similar to questions frequently asked in inter-
views for quantitative jobs in financial institutions. A Solutions Manual to this book
is forthcoming in 2014.

The book is written in a similar spirit as the best—selling “A Primer for the Math-
ematics of Financial Engineering” by the same author, and should accordingly be
useful to a similarly large audience:

xiii



xiv PREFACE

¢ Prospective students for financial engineering or mathematical finance programs
will be able to self-study material that will prove very important in their future
studies.

¢ Finance practitioners will find mathematical underpinnings for many methods used
in practice, furthering the ability to expand upon these methods.

e Academics teaching financial engineering courses will be able to use this book as
textbook, or as reference book for numerical linear algebra methods with financial
applications.

As Director of the elite Financial Engineering Masters Program at Baruch College,’
City University of New York, since its inception in 2002, the author has had the
privilege of interacting with students whose knowledge and ability are exceptional.
The community that evolved around the alumni, students, and faculty of the pro-
gram embodies the friendliness and mutual support of everyone involved, in a highly
competitive and ultimately very rewarding environment.

The material in this book has been used for the Numerical Linear Algebra with
Financial Applications refresher seminars that the author has been teaching since
2004, originally to students of the Baruch MFE Program, and, recently, to a much
wider audience. Studying this material before entering the program provided the
students with a solid background and played an important role in making them
successful graduates: over 90 percent of the graduates of the Baruch MFE Program
are currently employed in the financial industry.

This is the third book in the Financial Engineering Advanced Background Series,
following “A Primer for the Mathematics of Financial Engineering” and its Solutions
Manual.

A Solutions Manual to this book is forthcoming in 2014, to be followed by a Proba-
bility Primer for Mathematical Finance.

Dan Stefanica

New York, 2014

1Baruch MFE Program web page: http://mfe.baruch.cuny.edu
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Chapter 1

Vectors and matrices.

Column vectors and row vectors. Column form and row form of a matrix.
Column-based and row-based matrix—vector and matrix-matrix multiplication.
Covariance matrix computation from time series data.

Matrix rank. Nullspace and range of a matrix. Linear independence.

A omne period market model example.

Nonsingular matrices and the inverse of a matrix.

Diagonal matrices. Matrix multiplication by diagonal matrices.

Converting between covariance and correlation matrices.

qurelation matrix computation from time series data.

Lower and upper triangular matrices. Tridiagonal matrices.

1.1 Column and row vectors. Column form and row
form of a matrix.

An n-dimensional vector v € R™ is denoted by v = (vs)i=1.n and has n components
v R, fori=1:n!
The vector v = (v;)i=1:n is a column vector of size n if
(%!

V2
v o= : . (1.1)

Un

A column vector is also called an n x 1 vector.

1The vectors and matrices considered here have entries which are real numbers. While complex
numbers will occur naturally (for example, eigenvalues of a matrices with real entries may be
complex numbers), the presentation and the notations in this book will be specific to vectors and
matrices with real entries.



2 CHAPTER 1. VECTORS AND MATRICES

The vector v° is a row vector? of size n if
t
o' = (viv2 ... Vn) (1.2)

A row vector is also called an 1 X n vector.
Unless otherwise specified, a vector v denoted by v = (v4)i=1:n 18 & column vector.

An m x n matrix A = (A4, k))j=1:m.k=1:n has m rows and n columns. Rather
than using the entry by entry notation above for the matrix A, we will use either
a column-based notation (more often), or a row-based notation, both being better
suited for numerical computations. '

The column form of the matrix A is
A= (aila] ... |an) = col{@k)porin> (1.3)

where ax is the k-th column® of A, k=1 :n.

The row form of the matrix A is

T1
T2
A = T = TOW (75);m1.m (1.4)
T'm
where 7; is the j-th row? of A, j=1:m.
Row Vector — Column Vector multiplicatiom:5
Let v = (vi)i=1:n be a column vector of size n, and let w! = (w1 w2 ... wn) bea

row vector of size n. Then,

whv = szvl (1.5)
i=1

Column Vector — Row Vector multiplication:
Let v = (v;)j=1:m be a column vector of size m, and let w' = (w1 w2 ... ws) bea
row vector of size n. Then, vw® is an m x n matrix with the following entries:
(vwh)(j,k) = vjwg, Vi=1:m, k=1:n. (1.6)
Matrix — Column Vector multiplication:

Let A = col(ak),_,,, be an m x n matrix given by the column form (1.3), and let
v = (vg) k=1 be a column vector of size 1 given by (1.1). Then,

Av = kaak. (1.7)
k=1

2The notation v* emphasizes the fact that a row vector is the transpose of a column vector;
see also Definition 1.1.

3For every k = 1: n, the column vector ay is given by ar = (A(G, k) j=1:m-

4For every j = 1 : m, the row vector r; is given by r; = (A, k) k=1:n-

5Formula (1.5) is the same as formula (5.2) for the Euclidean inner product of two vectors.




1.1. MATRIX COLUMN FORM AND ROW FORM 3

" In other words, the result of the multiplication of the column vector v by the matrix
A is a column vector Av which is the linear combination® of the columns of A with
coefficients equal to the corresponding entries of v.

If A =row(r;)
vector Awv is

is the row form of A, then the j—th entry of the m x 1 column

j=lm

(Av)(j) = v, V1<j<m. (18)

Note that, since 7; is a 1 x n row vector and v is a n x 1 column vector, it follows
from (1.5) that the multiplication from (1.8) can be performed.

Row Vector — Matrix multiplication:
Let A = row (75),-1.,, be an m X n matrix given by the row form (1.4), and let
w' = (w1 w2 ... wm) be a row vector of size m. Then,

w'A = ZWjTj. (1.9)
j=1

In other words, the result of the multiplication of the row vector w® by the matrix A
(from the right) is a row vector w*A which is the linear combination of the rows of
A with cocfficients equal to the corresponding entries of wh.

If A = col(ax),._,.,, is the column form of A, then the k-th entry of the 1 x n row
vector w'A is

(w'A)(k) = w'ar, V1< k<n. (1.10)

Matrix — Matrix multiplication:
(i) Let A be an m x n matrix, and let B be an n.x p matrix given by B = col (bk )41,
Then, AB is the m X p matrix given by

Afh- - 1,1 ) AB = col(Ab),_,,, = (Abi|Ab2| ... | Abp). (1.11)

The result of multiplying the matrices A and B is a matrix whose columns are the
columns of B multiplied by the matrix A.

(i) Let A be an m x n matrix given by A = row (r;),_,.,,, and let B be an n x p
matrix. Then, AB is the m X p matrix given by

rl 7‘1B
L h' \ E : ' T'QB
AB = row (1;B), 1., = ] (1.12)
r} .
rmB

The result of multiplying the matrices A and B is a matrix whose rows are the rows
of A multiplied by the matrix B.

%A linear combination of the vectors wi, ws, ..., wy is any sum of these vectors multiplied by
real coefficients, i.e., ciwy + cawa + . .. + Crwn, where ¢; € R, ¢ = 1 : n; see also Definition 1.5.
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4 CHAPTER 1. VECTORS AND MATRICES

(iii) Let A be an m X n matrix given by A = row(r;);_,,,, and let B be an n x p
matrix given by B = col(bx);_, . Then, AB is the m x p matrix whose entries are
given by’ ;

(AB)(j,k) = rjby, Yj=1:m, k=1:p. (1.13)

Matrix — Matrix — Matrix multiplication:

Let A be an m X n matrix given by A = row (Tj)jzl:m, let B be an n X p matrix,
and let C' be a p X ! matrix given by C = col(ck),_y,,- Then, ABC is the m x|
matrix whose entries are given by

(ABC)(j,k) = 7jBex, Yj=1:m, k=1:1 (1.14)

Note that (1.14) follows from (1.13), since BC' = col (Ber),_;,;; ¢f. (1.11).
Note that matrix multiplication is associative, i.e., ABC = (AB)C = A(BC).

We emphasize again that we almost exclusively think of a matrix as either a col-
lection of column vectors, or as a collection of row vectors, rather than as a collection
of individual entries. For numerical purposes, this is an efficient way to implement
matrices. Also, linear algebra proofs using the column form or the row form of a
matrix are more insightful and more compact than proofs using individual entries of
a matrix. Most of the proofs from this book use a vector-based approach.

Definition 1.1. The transpose of annX 1 column vector v = (v )i=1.n 15 the L xXn row
vector vt = (v1 va ... vy). The transpose of an 1 X n row vector r = (r1 72 ... Tn)
is the n x 1 column vector r* = (7)i=1:n.

Note that
() = @b, YveER™ ceR. (1.15)

Definition 1.2. The transpose matriz A* of an m X n matriz A is an n X m matriz
given by
A'(k,j) = A(G,k), Vk=1:n, j=1:m. (1.16)

Transposing a matrix switches the column form of the matrix to a row form, and
the row form of the matrix to a column form as follows:

A=col(ar)_y, < A'=row(ap),_, ; (1.17)
A=row (1)) i1 A® = col (T§)j=1:m . (1.18)

From (1.16), we find that, for any matrix A,
(AN = A4, (1.19)

and, for any matrices A and B of the same size,
(A+B)" = A'+ B" (1.20)

Lemma 1.1. Let A be an m X n matriz and let v be a column vector of sizen. Then,

(Av)" = o' A" (1.21)

"Note that the multiplication from (1.13) can be performed since r; is a 1 X n row vector and
by is a n X 1 column vector; see (1.5).



Highlight

Highlight

Highlight

Highlight

Highlight

Highlight


1.1. MATRIX COLUMN FORM AND ROW. FORM 5

4P'r'oof. Let A= col(ar)s_y., and v = (vs)i=1:n. Then, Av =737 v;a:, and

(Av)® <szaz> = Z(viai)t = Zviaﬁ, . (1.22)

since v; € R; see (1.15).

Note that A* = row (afc) cf. (1.17). Then, from (1.9), it follows that

k=1n’

Zviaﬁ. i (1.23)
i=1 :
From (1.22) and (1.23), we conclude that (Av)* = v* A" s

It is very important to note that the transpose of the product of two matrices is
not the product of the transposes of the two matrices,® i.e., (AB)* # A*B*. Instead,
the following result holds:®

Lemma 1.2. Let A be an m X n matriz and let B be ann X p matriz. Then,
(AB)* = B'A". . (1.24)

Proof. Recall from (1.11) that, if B = col (bx),_,,,, then AB = col (Abx) Thus,

k=1:p"*
from (1.17), we obtain that

(4B) = (col(Ab)eey,) = row ((Abe)"),_,

Using (1.21), (1.12), and the fact that B* = row (b},)
that

jem1:p? S€€ (1.17) we conclude

(AB)t = row (biAt)kZLP‘ = (row (bk)kzlzp) At = B'At
(]

Definition 1.3. A matriz with the same number of rows and columns is called a
square matric.

Note that an n X n square matrix is also called a square matrix of size n.
Definition 1.4. A square matriz is symmetric if and only if the matriz and its
transpose are the same. In other words, a square matriz A of size n is symmetric if
and only if A = A', i.e

AGG k) = A(kj), Y1<j<k<m

The product of two symmetric matrices is not necessarily a symmetric matrix, as
seen in the example below.

8A similar property holds for inverses of matrices, i.e., (AB)™* # AT!B~1. Moreover,
(AB)™' = B~1 A7, see Lemma 1.7 for details.

®The result of Lemma 1.2 extends as follows: ([17_; 4;)* = []0_ _1 AL 3_;. A proof can be
given by induction; see an exercise at the end of this chapter.
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2
1

D =

1 0

AB = (g ;) £ (AB)* = (‘11 g) O

The identity matrix,'® denoted by I, is a square matrix with entries equal to 1 on
the main diagonal and equal to O everywhere else, i.e.,

Example: Let A = (
Then,

) and B = < 2 1 ) be two symmetric matrices.

1 0 ... 0

01 ... 0
I =

00 ... 1

The k-th column of the identity matrix is denoted by ex. Thus,
ex(i) =0, for 1 <i£k<n and ex(k)=1 (1.25)
The column form and row form of the identity matrix I are, respectively,

I =col(er)pmyn; I =row (ei)k:hn ;

cf. (1.17), since I = I".

Lemma 1.8. (i) Let A = col(ar),_,., be an m X n matriz. If ey is the k-th column
of the n X n identity matriz, then '

Aer, = ag, Vk=1:n, (1.26)

and therefore AI = A.

(i) Let A= row(T5);—1.m
identity matriz, then

be an m X n matriz. If e; is the j-th column of the m xm
A =1 Vi=1:m, (1.27)
and therefore IA = A.
Proof. (i) Let A = col(ak),_,.,- Recall from (1.25) that ex(k) = 1 and ex(3) = 0,
for ¢ # k. From (1.7), we obtain that
Aey = > ex(i)a; = ax. (1.28)
i=1 ’

If T = col (ex)y—y.p,» 1t follows from (1.11) and (1.28) that

Al = COI(Aek)kzl;n = COl(ak})kzlzn = A

(ii) Let A = row (r5);_;.,,- Recall from (1.25) that e; (j) =1 and e;(3) =0, for i # 7.

From (1.9), we find that

A = Zej(i)ri = 7y. (1.29)
i=1

19The n x n identity matrix is sometimes denoted by I,. We do not use this notation, but
denote by I identity matrices of any size.
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I T = row (ef) .+ it follows from (1.12) and (1.29) that

j=1:
.
TA = row (ejA)jzlzm = 10w (1) ;o1 = A
O
1.1.1 Covariance matrix computation from time series data
Let X1, Xo, ..., X, be random variables given by time series data at N data points

t;, ¢ = 1 : N. In other words, the values of Xy(¢;) are given for all k = 1 : n and
i=1:N.
Denote by jix, the sample mean of the random variable Xk, for k=1 :n, ie,

1 N
Bx, = > X(ti)-
i=1

The sample covariance matrix Yx of the n random variables X, Xo, ..., X5 is
the n X n square matrix with entries

x(j,k) = @V(X;, Xx), V1<ik<n, (1.30)
where Tov(X;, X1) is the unbiased sample covariance of the random variables X; and
X given by

N
G, X) = e oK) = B )l ~ix). (13D)
From (1.30) and (1.31), we find that ]
N
Sx(ih) = g S(G() - i) (Xa(t) - Bix,) (1.32)

=1

The sample covariance matrix Six is symmetric since, from (1.32), it follows that

Zx (4, k) (X5 (t:) — iy ) (Xilts) — Fix,,)

I
!
| i
.MZ

1

i

(X (ts) — By ) (X5 (k) — Bix;)

1H
M=

N -1

i=1

-
[

= Sx(k,j), V1<jk<n.

. The sample covariance matrix can be computed efficiently by using matrix formu-
lation for the time series data Xx(¢;), ¢ =1: N, k= 1:n, as shown below.
Let: Tx be the corresponding N X n matrix of time series data, i.e., let Tx =
(Tx (3, k))i=1:Nk=1:n With

Tx(i, k) = Xi(ts), VI<k<mn, 1<i<N. (1.33)
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Let Tx be the N X n matrix of time series data where the sample mean of each
random variable is subtracted from the corresponding time series data, i.e., let T'x =
(T (%, k))i=1:N k=1:n With

Tx(i,k) = Xi(t)) —fx,, V1<k<n, 1<i<N. (1.34)

Then, the sample covariance matrix ix can be computed from T'x as follows:

~ 1 =

For clarity, we include an example below and the proof of (1.35).

Ezample: The end of day adjusted close prices for Apple, Facebook, Google, Mi-
crosoft, and Yahoo between 1/10/2013 and 1/29/2013 were:

Date AAPL FB GOOG MSFT YHOO
1/10/2013 523.51 31.30 741.48  26.46 18.99
1/11/2013 520.30 31.72 739.99  26.83 19.29
1/14/2013 501.75 30.95 723.25  26.89 19.43
1/15/2013 485.92 30.10 724.93 27.21 19.52
1/16/2013 506.09 29.85 715.19 27.04  20.07
1/17/2013 502.68 30.14 711.32  27.25 20.13
1/18/2013 500.00 29.66 704.51  27.25  20.02
1/22/2013 504.77 30.73 702.87  27.15 19.90
1/23/2013 514.01 30.82 741.50 27.61 20.11
1/24/2013 450.50 31.08 754.21 27.63  20.44
1/25/2013 439.88 31.54 753.67 27.88  20.37
1/28/2013 449.83 32.47 750.73  27.91 20.31
1/29/2013 45827 30.79 753.68 28.01 19.70

The time series matrix of the daily returns'! of the five stocks above between
1/11/2013 and 1/29/2013 is

—0.0061 0.0134 —0.0020 0.0140 0.0158
—0.0357 —0.0243 —0.0226  0.0022 0.0073
—0.0315 —0.0275 0.0023 0.0119 0.0046
0.0415 —0.0083 —0.0134 —-0.0062  0.0282
—0.0067 0.0097 —0.0054 0.0078 0.0030
—0.0053 —0.0159 —0.0096 0.0000 —0.0055
0.0095 0.0361 —0.0023 —0.0037 —0.0060
0.0183 0.0029 0.0550 0.0169 0.0106
—0.1236  0.0084 0.0171 0.0007 0.0164
—0.0236 0.0148 —0.0007 0.0090 —0.0034
0.0226 0.0295 —0.0039 ° 0.0011  —0.0029
0.0188  —0.0517  0.0039 0.0036 —0.0300

where, e.g., the daily return of GOOG on 1/24/2013 is

754.21 — 741.50
741.50
11ypless specified otherwise, the return between times 71 and 73 of an asset with spot prices

S(71) and S(72) will mean the percentage return, which is —S—(—t"fg)(:—ls)(‘rl—)

= 0.0171 = Tx(9,3),
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" and the daily return of GOOG on 1/28/2013 is

750.73 — 753.67

Er g = —0.0039 = Tx(11,3).

The sample means of the returns of the five stocks are —0.0101 (AAPL), —0.0011
(FB), 0.0015 (GOOG), 0.0048 (MSFT), and 0.0032 (YHOO). By subtracting the

sample mean of each column of Tx we obtain from (1.34) that

0.0040 0.0145 —0.0035 0.0092 0.0126
—0.0255 —0.0232 —0.0242 -0.0025 0.0041
—0.0214 —-0.0264 0.0008 0.0071 0.0015

0.0517 —0.0072 —-0.0150 —0.0110 0.0250
0.0034 0.0108 —0.0069 0.0030 —0.0002
= 0.0048 —0.0149 -—0.0111 —0.0048 —0.0086

Tx =1 00197 00371 -0.0039 —0.0084 —0.0092 (1.36)
0.0285 0.0040 0.0534 0.0122 0.0074
—0.1134  0.0095 0.0156 —0.0041 0.0132
—0.0134 0.0159 —0.0022 0.0043 —0.0066
0.0328 0.0306 —0.0054 —0.0037 —0.0061
0.0289 —0.0507 0.0024 —0.0012 —0.0332
We now show that the formula (1.35) holds, i.e.,
Sy = — TLT; (1.37)
X = N -1 X4 Xy .
see also Theorem 7.1 and the proof therein.
From (1.34), we find that, for any 1 < j,k <n,
Tx(i, k) = Xi(t:) ~@ix, and Tx(i,5) = X;(t:) —fix;, Vi=1:N. (1.38)
Then, from (1.32) and (1.38), it follows that
N
a . 1 - ~
Ex(i.k) = 53 Z(Xj(ti) = fix; ) (Xk(t:) — Bxy,) (1.39)
=1
1 e,
= %3 ZTx(i,j)Tx(i,k), V1<jk<n (1.40)

=1

Let T x,, be the N x 1 column vector of the time series data for the random variable

X with ix, subtracted from each data value, ie.,

TXk = (Xk(tl) _ﬁxk)izlzN'

The time series matrix Tx = (Tx (i, k))i=1:N,k=1:n has the following column form:

Tx = col(Tx,)

k=1mn "

Moreover,

Tx(1,5) =Tx,; () and Tx(i,k) =Tx, (i), V1<jk<n, 1<i<N,
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and, from (1.40), we obtain that

N
a . 1 = am
Ex(hk) = 57 L Tx0OTx0) (1.41)
i=1
1 = = .
= N———ITXjTXk’ V1<j,k<n, (1.42)

where the last equality follows from the row vector-column vector multiplication
formula (1.5).

Since Tx = col (T'x;,),_y,, it follows that T = row (T}j)l i see (1.17).
j=ln

From (1.13), we obtain that the (j, k) entry of the matrix T;Tx is
(TeTx)(, k) = Tx,Tx,, V1<ik<n (1.43)

Then, from (1.42) and (1.43), we conclude that
~ 1 —t . .
Sx( k) = 77 @GR, Y1<ik<n,

and therefore 1
~ P
Sx = g TxTx

which is what we wanted to prove; see (1.37).

Example (continued):

The sample covariance matrix $ix of the daily returns of AAPL, FB, GOOG,
MSFT, YHOO between 1/11/2013 and 1/29/2013 can be computed using formula
(1.35) with N = 12 and Tx given by (1.36). We find that

0.0018  0.0000 —0.0001 0.0000 —0.0001
0.0000  0.0006 0.0001 0.0000 0.0001
¥x = —0.0001 0.0001 0.0004 0.0001 0.0000 . O (1.44)
0.0000 0.0000 0.0001 0.0001 0.0000
—0.0001 0.0001 0.0000 0.0000 0.0002

More properties of covariance matrices obtained from time series data can be
found in section 7.2.

1.2 Matrix rank, nullspace, and range of a matrix

Definition 1.5. Let wi, wa, ..., wp be vectors of the same size. The vectors wi,
wa, ..., wp are linearly independent if and only if the only linear combination of
these vectors that is equal to O has all coefficients equal to 0, i.e.,

P
if Zciwizo, withe; € Ri=1:p, then ¢; =0, Vi=1:p.

i=1
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If A is an m X n matrix, the column rank of A is the largest number of linearly
independent columns of A, and the row rank of A is the largest number of linearly
independent rows of A. However, the column rank and the row rank of a matrix are
always the same, not only for square matrices, but also for rectangular matrices; see
section 10.5 for an elegant proof of this fact. Therefore, the following definition is
consistent:

Definition 1.6. The rank of a matriz A is denoted by rank(A) and is equal to the
largest number of linearly independent columns*® of A.

Definition 1.7. The nullspace of an m X n matriz A is
Null(A) = {veR" suchthat Av=0}.
The nullspace of the matriz A is also called the kernel of A and is denoted by Ker(A).

Definition 1.8. The range of an m X n matriz A contains all the vectors obtained
from matriz—vector multiplications involving A, i.e.,

Range(A) = {u € R™ such that there ezists v € R™ with uv= Av}.  (1.45)

Definition 1.9. Let wi, w2, ..., wp be vectors of the same size. The space generated
by w1, wa, ..., Wp 18 made of all the linear combinations of the vectors wi, wa, ...,
Wp, t.€.,
P
< W1, Wy - oo, Wp > = Zciwi, with ¢; € R, i=1:p ;. (1.46)
7=1

Lemma 1.4. Let A = col{ax),..,.,, be an m x n matriz.. The range of the matriz A
is the space generated by the column vectors of A, i.e.,

Range(A) = < a1,a2,...,00 > . (1.47)

Proof. We prove (1.47) by double inclusion.

Let u €< a1, az,...,a, >. By definition {1.46), there exist ¢; € R, i =1:n, such
that :

u = Zciai. (1.48)
i=1

Denote by v = (c;)i=1:» the column vector with entries equal to the coefficients from
the linear combination (1.48). From (1.7), it follows that

Av = Xn:viai = Xn:ciai. (1.49)
i=1 i=1

From (1.48) and (1.49), we obtain that u = Av. Therefore, u € Range(A), and we
conclude that

< ai,as,...,an > C Range(4). (1.50)

12 As explained above, the rank of a matrix can also be defined as the largest number of linearly
independent rows of the matrix.
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Let u € Range(A). From (1.45), it follows that there exists a vector v € R™ such
that u = Av. Then, from (1.7) and (1.46), we obtain that

n

u = Av = E Vi@ € < G1,02,...,0n >,

=1
and therefore
Range(4) C < ai,az,...,0n > . (1.51)
From (1.50) and (1.51), we conclude that Range(A) =< a1,az,...,an >. O
Definition 1.10. Let V be a vector space in R™. The vectors v1,vs,...,vp €V form
a basis for V if they are linearly independent and if the space generated by the vectors
V1,V2,..,Vp 18 equal to V, d.e., if V =< wi,v2,...,0p >.

Lemma 1.5. Any two basis of a vector space in R™ are made of the same number ‘
of vectors. .

The proof of this result is of no further relevance in this book and can be found,
e.g., in Lax [26].

Definition 1.11. The dimension of o vector space V from R™ is denoted by dim(V)
and is equal to the number of vectors from a basis of V.

While a vector space has infinitely many different basis, Definition 1.11 is con-
sistent, since, from Lemma 1.5, it follows that the numbers of linearly independent
vectors from any two different basis are equal.

1.2.1 A one period market model

In a one period market model for the evolution of the prices of financial securities,
portfolio returns can be analyzed using & linear algebra framework. In this section,
we present an example of this framework, which forms the basis of the Arrow-Debreu
model; see Chapter 3 for details on the Arrow—Debreu model.

Consider a market with m securities. Let Sity, S2tg, - - -» Omto be the spot prices
of the securities at time to, and denote by Si, = (Sjte);=1.,,, the price vector of the
securities at time fg. Note that Sy, is an m x 1 column vector.

Assume that, at time 7 > to, there are n possible states of the market, denoted

K . C
by w!, w?, ..., w". Let 5% Dbe the price at time 7 of asset j if state w® occurs, for

1<j<mand1<k<n Let

wk
1T
wk
k 2T

Ck
St
be the price vector of the m assets if state w® occurs, for k =1:n, and let

Sie = (S¢S o S
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be the vector of all the possible prices of asset j at time 7, for j = 1: m. Note that
Sy * is an m x 1 column vector, and Sj+ is an 1 X n row vector. .

The payoff matrix M, is the m X n matrix made of all possible asset prices at
time 7, with the j-th row of maftrix M, corresponding to the prices of asset j, for
4 =1:m, and the k-th column of matrix M, corresponding to the asset prices in
state w®, for k=1:n, i.e.,

M, = col (5:k)k_1 = (s:’l |5° ] ... |s’:"); (1.52)
Sl‘r
SZT

M. = row(Sir)jmim = - . (1.53)
Semr

Exzample: Consider two assets with spot prices $30 and 850, respectively. Assume

that, in three months, the first asset will be. worth either $34 or $24, and the second

asset will be worth either $56, $51, or $46. The values of the three months at-the-

money (ATM) European call and put options'® with strike $30 on the first asset are

$2.6 and $2.3, respectively, and the values of the three months ATM European call

and put options with strike $50 on the second asset are $2.7 and $2.2, respectively.
Assume that the future value in three months of $1 today is $1.01.*

A three months market model with seven securities and six states can be
constructed based on the information above, as follows:

Securities:

e cash;

o first asset;

e second asset;

o three months ATM call with strike $30 on the first asset;

e three months ATM put with strike $30 on the first asset;

e three months ATM call with strike $50 on the second asset;
o three months ATM put with strike $50 on, the second asset.

States of the market in three months:

o first asset at $34 and second asset at $56 (state w');
o first asset at $34 and second asset at $51 (state w®);
o first asset at $34 and second asset at $46 (state w?);
o first asset at $24 and second asset at $56 (state w*);
o first asset at $24 and second asset at $51 (state w®);
o first asset at $24 and second asset at $46 (state w®).

This is a market model with m = 7 securities and with n = 6 states.

13 An at—the~money option has strike equal to the spot price. A brief overview of European
options can be found in section 10.3; see also Neftci [31] and Stefanica [36].

4 his corresponds, for continuous compounding, to a three months risk free interest rate equal
to 7 = 0.0398 = 3.98%, which can be found by solving the equation 1.01 = 1 exp (r . %) for r.
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The price vector of the securities at time 0, corresponding to a $1 cash position
and to positions equal to one unit of each of the other securities, is

So = | 26 |. (1.54)

For j ==1:7, let S; 1,4 be the vector of the six possible prices of asset j in three
months. The price vectors S1,1/4 of cash, S 1,4 of the first asset, and Ss1/4 of the
second asset, respectively, are

Spia = (101 1.01 1.01 1.01 1.01 1.01); (1.55).
Spija = (34 34 34 24 24 24); (1.56)
Ssia = (56 51 46 56 51 46). (1.57)

To compute the price vectors Sa,1/4, Ss,1/4, S6,1/4, S7,174 of the options, note that
all the options have three months maturity, and recall from (10.90) and (10.91) that
the payoffs at maturity of call and put options are

C(T) = max(S(T) — K,0) = { S(T)O" K, i ggg 2 g (1.58)
P(T) = max(K — S(T),0) = { K_%(T), i gg; =% )

From (1.58), we obtain that the values of the three months ATM call with strike
$30 on the first asset are given by

Ci(1/4) = max(S:(1/4) — 30,0),

where S1(1/4) denotes the value of the second asset in three months, and are as
follows:

state w!: S1(1/4) =34 and Cy(

state w?:  S1(1/4) =34 and Ci(1/4) = max(34 — 30,0) = 4;

state w® 1 $1(1/4) =34 and C1(1/4) = max(34 — 30,0) = 4;

state w? :  $1(1/4) =24 and C,(1/4) = max({24 — 30,0) = 0;
5. S5i1(1/4) =24 and C1(1/4) = max(24 — 30,0) = 0;
6. 51(1/4) =24 and C1(1/4) = max(24 — 30,0) = 0.

1/4) = max(34 — 30,0) = 4;

Thus, the vector Sy,1/4 of the six possible prices of the three months ATM call with
strike $30 on the first asset is

Sige = (44400 0). (1.60)

From (1.59), we obtain that the values of the three months ATM put with strike
$30 on the first asset are given by

Pi(1/4) = max(30 — S1(1/4),0),
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" and are as follows:

state w' :  S1(1/4) =34 and Pi(1/4) = max(30 — 34,0) = 0;
state w? :  S1(1/4) =34 and Pi(1/4) = max(30 — 34,0) = 0;
state w® :  S81(1/4) =34 and Pi(1/4) = max(30 — 34,0) = 0;
state w* :  S1(1/4) =24 and Pi(1/4) = max(30 — 24,0) = 6;
state w® :  S1(1/4) =24 and Pi(1/4) = max(30 — 24, 0) = 6;
state w® : S1(1/4) =24 and Pi(1/4) = max(30 — 24,0) = 6.

Thus, the vector Ss,1/4 of the six possible prices of the three months ATM put with
strike $30 on the first asset is

From (1.58), we obtain that the values of the three months ATM call with strike
$50 on the second asset are given by

C2(1/4) = max(S2(1/4) — 50,0),

where S2(1/4) denotes the value of the second asset in three months, and are as
follows:

state w' : S2(1/4) =56 and C>(1/4) = max(56 —50,0) =
state w? :  S2(1/4) =51 and C%(1/4) = max(51 — 50,0) =
state w® 1 S2(1/4) =46 and C3(1/4) = max(46 — 50,0) = 0;

1 )_ 6

2 )_1

3 )_~ 0

state w? 1 Sy(1/4) = 56 and C2(1/4) = max(56 — 50, 0) = 6;
5

=1

6 ): 0

)

state w® 1 S2(1/4) =51 and C2(1/4) = max(51 ~ 50,0) =
S2(1/4) = 46 and C3(1/4) = max(46 — 50,0

Thus, the vector Sg /4 of the six possible prices of the three months ATM call
with strike $50 on the second asset is
Seaa = (6106 10). (1.62)

From (1.59), we obtain that the values of the three months ATM put with strike
$50 on the second asset are given by

Py(1/4) = max(50 — S2(1/4),0),

and are as follows:

state w' :  S2(1/4) =56 and P»(1/4) = max(50 — 56,0) = 0;
state w? :  S2(1/4) =51 and Pa(1/4) = max(50 — 51,0) = 0;
state w® :  93(1/4) =46 and P(1/4) = max(50 — 46,0) = 4;
state w* :  S2(1/4) =56 and P»(1/4) = max(50 — 56,0) = 0;
state w® :  S2(1/4) =51 and P(1/4) = max(50 — 51,0) = 0;
state w% :  S2(1/4) =46 and Pp(1/4) = max(50 — 46,0) = 4.

Thus, the vector S7,,4 of the six possible prices of the three months ATM put
with strike $50 on the second asset is

Sraa = (00 400 4). (1.63)
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Summarizing, we conclude from (1.55-1.57) and (1.60-1.63) that

S11/4 (1.01 1.01 1.01 1.01 1.01 1.01);
Saaza = (34 34 34 24 24 24);

Sz = (56 51 46 56 51 46);

Si1a = (44400 0);

Ssa72 = (000 6 6 6);

Seae = (6106 1 0);

Sraa = (00400 4).

The payoff matrix M;,4 is the following 7 X 6 matrix:

S1,1/4 1.01 101 1.01 1.01 1.01 1.01
S2,1/4 34 34 34 24 24 24
S3,1/4 56 51 46 56 51 46
M1/4 = S4,1/4 = 4 4 4 0 0 0 3 (164)
51/ 0O 0 0 6 6 6
Se.1/4 6 1 0 6 1 0
S7,1/4 0 O 4 O O 4

see (1.53). '
Let Sf/i4 be the price vector of the seven securities in three months if state w*

occurs, for i = 1: 6. Recall from (1.52) that
N C A AR A AR AR (1.65)

From (1.64) and (1.65), we obtain that

1.01 1.01 1.01
34 34 34
56 51 46
sa = 4 |;s5=| a4 |, s =] 4 |
1/ 0 1/4 0 1/ 0
6 1 0
0 0 4
1.01 1.01 1.01
24 24 24
56 51 46
Swt = 0 ;S8 = 0 g 878 = 0
1/4 6 1/4 6 YL 6
6 1 0
0 0 4

Consider a portfolio made of the m securities and consisting of @; units of asset
J at time to, j = 1 : m. The value V;, of the portfolio at time # is

Vi = @15‘1% + 0252, + ... + em‘s’mt07
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" which can be written using the row vector—column vector multiplication formula (1.5)
as

tho = @tStm

where © = (0;),_,.,, is the m x 1 positions vector.
We assume that the asset positions in the portfolio remain unchanged until time
T. Let

v, = (V:’l vt v;"‘f‘) (1.66)

be the 1 x n row vector of the possible values of the portfolio at time 7, where VT“”c
is the value of the portfolio if state w® occurs, for € = 1: n. Then,

k k k ok
V’rw = @15(1‘}1— + 62‘5';}7' +...+ emSmT
- ots, (1.67)

where (1.5) was used for deriving (1.67).
From (1.66) and (1.67), we obtain that

v, = (V:’1 ve' o v:’") - (@tsz” otse’ ... e‘s:")
= @tcol<5fk)k=1m
= O'M,, (1.68)
since M, = col (ka) ) cf. (1.52).

Ezxample (continued):

Consider the following portfolio in the one period market model with seven secu-
rities and six states introduced above:
e long $10,000 cash;

e long 200 units of the first asset;

e short 100 units of the second asset;
e short 1000 three months ATM calls on the first asset;
e long 500 three months ATM calls on the second asset;
e long 600 three months ATM puts on the second asset.

The positions vector of the portfolio is

10000
200
—100
0 = 1000
0
500
600

The value of the portfolio at time 0 is
Vo = ©'Sy = 11,070,

where the price vector Sp of the securities at time 0 is given by (1.54).
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Depending on the state of the market in three months, the possible values of the
portfolio are

Vija = ©'My; = (10300 8300 10700 12300 10300 12700),

where the payoff matrix M 4 is given by (1.64).

A derivative security is replicable in a market model with m securities and n
market states at time 7 > to if there exists a portfolio made of the m securities which
has the same values at time 7 as the derivative security in every state of the market
at time 7. Let s be the price vector at time 7 of a replicable derivative security, and
let © = (©;)j=1.m be the positions vector of the replicating portfolio. If V; is the
price vector of the replicating portfolio at time 7, then, from (1.68), we find that

s, = V. = ©'M, = Z@jgﬁ, (1.69)
et

where for the last equality we used (1.9) and the fact that M, = row (S57)j=1:m-

In other words, a derivative security is replicable if and only if the price vector of
the derivative security at time 7 belongs to the space generated by the price vectors
Sir, S2r, ..., Smr of the m securities at time 7; cf. Definition 1.9.

The m securities are non-redundant if no security is replicable using the other
m — 1 securities. Equivalently, the m securities are non-redundant if their price
vectors at time 7 are linearly independent. Otherwise, the payoff of one of the
securities would be replicable by using the other m — 1 securities, which would render
the security redundant. Thus, a one period market model has no redundant securities
if and only if the payoff matrix M- has rank equal to m, i.e., rank(M,) = m.

Exzample (continued):
Recall that the price vectors in three months of the seven securities from the
market model considered here are

Si174 = (1.01 1.01 1.01 1.01 1.01 1.01);
Sa17a = (34 34 34 24 24 24);

S31a = (56 51 46 56 51 46);

Siia = (44400 0);

Ss14 = (0006 6 6);

Seaa = (6106 1 0);

S7,1/4 (00400 4).

Note that
30
Ss174 + Sa174 — Si/a = (30 30 30 30 30 30) = m51,1/4~ (1.70)
Thus, the price vectors S11/4, S2,1/4, S4,1/4, and S5 174 corresponding to cash, the

first asset, the three months ATM call and the three months ATM put on the first
asset, respectively, are not linearly independent.
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We conclude that, e.g., the ATM put on the first asset can be replicated using
cash and positions on the first asset and ATM calls on the first asset, since

Ss1/a = —=S1,1/4a — Sa2,17a + Sy/4,

30
1.01
and therefore that the ATM put on the first asset is a redundant security.

Also, the price vectors Sy 14, S5,1/4, 56,174, and S71/4, corresponding to cash,
the second asset, the three months ATM call and the three months ATM put on the
second asset, respectively, are not linearly independent, since

S7’1/4 + 83,1/4 - 86,1/4 = (50 50 50 50 50 50) Sl J1/4 (171)

1. 01
We conclude that, e.g., the ATM put on the second asset can be replicated using
cash and positions on the second asset and ATM calls on the second asset, since

Sr1/4a = 51 1/4 — 53174 + Se1/4,

101

and therefore that the ATM put on the second asset is a redundant security.

The redundancies above are due to the Put—Call parity,'® which states that the
values C(t) and P(t) of a European call and of a European put option with the
same strike K and maturity 7' and on the same underlying asset with spot price S(t)
satisfy the following model independent relationship in arbitrage—free markets:

P(t) + S(t) — Ot) = Ke "T9,

Thus, at maturity,
P(TY+ S(T) - C(T) = K. (1.72)

Then, (1.70) is a consequence of (1.72), since the vectors Ss 1,4, S2,1/4, Sa,1/4, and
S1,1/4 are the price vectors corresponding to P(T"), S(T), C(T), and K, respectively,
for the three months ATM put and call on the first asset.

Similarly, (1.71) is a consequence of (1.72), since the vectors Sz 1,4, 53,174, Ss,1/4,
and S 174 are the price vectors corresponding to P(T), S(T), C(T), and K, respec-
tively, for the three months ATM put and call on the first asset.

1.3 Nonsingular matrices

From a numerical perspective, a nonsingular matrix A is a square matrix such that
any linear system of the form Az = b has a unique solution z. Solving linear systems
corresponding to nonsingular matrices is often required in financial applications and
is a fundamental numerical linear algebra problem.

The formal definition of a nonsingular matrix is given below:

15 For more details on the Put—Call parity, see section 10.3 and section 1.9 from Stefanica [36].
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Definition 1.12. The square matriz A is nonsingular if and only if there exists
another matriz, called the inverse matriz of A and denoted by A™", such that

AATT = ATPA = IL (1.73)

Definition 1.13. The square matriz A is singular if and only if the matriz A is not
nonsingular.

From (1.73), we obtain that the matrix A satisfies the definition of the inverse of
the matrix A~'. Thus, the inverse of the inverse of a nonsingular matrix is equal to
the matrix itself, i.e.,

(A™H = A (1.74)

Note that, for Definition 1.12 to make sense, the inverse matrix of a nonsingular
matrix as given by (1.73) must be unique, which is indeed the case: Assume that B
and B, are inverse matrices of a nonsingular matrix A. We will show that By = Bsy:
From (1.73), we find that

AB; =B1A=1 and ABy=B;A=1.

By multiplying I = AB; to the left by Bz and using the fact that B;A = I, we
obtain that
By = Bz(ABl) = (BzA)Bl = IBl = Bl'

Theorem 1.1. Let A be a square matrix of size n. The conditions below can be
regarded as equivalent definitions for A to be a nonsingular matriz:

A nonsingular <= Null(A) = {0} (1.75)
<= Range(A) =R" (1.76)
< rank(A) = n. (1.77)

Similarly, the conditions below'® can be regarded as equivalent definitions for A to be
a singular matriz:

A singular <= Null(A) # {0} (1.78)
<= there exists v € R™, v #£ 0, such that Av=0. (1.79)

The proof of Theorem 1.1 is of less relevance for our purposes and can be found,
e.g., in Strang [41]. '

A very useful equivalent characterization of a matrix being nonsingular can be
given in terms of the determinant of the matrix; see section 10.1.1 for details.

Theorem 1.2. Let A be a square matriz. Then, .

A nonsingular <= det(A) #0; (1.80)
A singular <= dei(A) =0. (1.81)

160ther necessary and sufficient conditions for the matrix A to be singular are
A singular <= Range(4) # R" <= rank(A) < n.

These conditions have less practical value, and are not included in Theorem 1.1.
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" Lemma 1.6. Let A and B be square matrices of the same size. If AB = I, then A
and B are nonsingular matrices, B is the inverse matriz of A (and A is the inverse
matric of B), and therefore BA = I.

Proof. Recall that the determinant of the identity matrix is 1, i.e., det(I) = 1; cf.
(10.1). Since AB = I, it follows from Lemma 10.1 that det(A) det(B) = 1, and
therefore both det(A) # 0 and det(B) # 0. From (1.80), we conclude that A and B
are nonsingular matrices. Let A™* be the inverse of A. Multiplying AB = I to the
left by A™! and using the fact that A" A = I, we find that

A" = ATY(AB) = (A"'A)B = B.
We conclude that B is the inverse of A, and therefore BA= A"'A=1. O

Lemma 1.7. Let A and B be square matrices of the same size.
(i) The matriz AB is nonsingular if and only if both A and B are nonsingular.

(i) If A and B are nonsingular, then'”
(AB)™* = B7'A7'. (1.82)

Proof. (i) From (1.80), we find that AB is nonsingular if and only if det(AB) # 0,
i.e., if and only if det(A)det(B) # 0; cf. (10.9). Thus, the.matrix AB is nonsingular
if and only if det(A) s 0 and det(B) # 0. Using again (1.80), we conclude that the
matrix AB is nonsingular if and only if both matrices A and B are nonsingular.

(ii) If A and B are nonsingular, it follows that
(BT'A™YWAB = B™* (A™*A)B = B 'B = I,

since A=A = I and B~*B = I. From Definition 1.12, we conclude that (AB)™! =
B4 O

It is important to note that the inverse of the product of two matrices is not the
product of the inverses, i.e.,

(AB)™! # A7'B™L.

Also, note the similarity between (1.82), i.e., (AB)™! = B~'A~!, and the result
(AB)! = B' A" for the transposition of the product of two matrices; cf. (1.24).

Lemma 1.8. Let A be a square matriz. If A is nonsingular, then A® is a nonsingular
matriz and

(aH™ = (a7 (1.83)

Proof. Note that it is enough to show that (A_l)tAL = I; cf. Lemma 1.6. This
follows from (1.24), since

(A™M)'Aa = (44 =1 =1

o

"Note that (1.82) extends as follows: (IT2_, As) 1= 2., A;_;l_i. A proof can be given by
induction; see an exercise at the end of the chapter.
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Lemma 1.9. The inverse of a symmetric nonsingular matriz is a symmetric matriz.
In other words, if A is a symmetric nonsingular matriz, then
(A" = an
Proof. If A is a symmetric matrix, then A® = A. From (1.83), we find that

(A = () = A

1.4 Diagonal matrices

Definition 1.14. A square matric is diagonal if and only if all the entries of the
matriz which are not on the main diagonal are equal to 0.
In other words, the n X n matriz D is diagonal if and only if

D(G,k) =0, V1<j#k<n. (1.84)

Note that, if d; = D(%,3) for all { =1 : n, then

A 0 ... 0
0 do ... 0

p=| . 7 | (1.85)
0 0 ... dn

From (1.84) and (1.85), it follows that:
(1) any diagonal matrix is symmetric;

(ii) both the sum and the product of two diagonal matrices are diagonal matrices;
see also Lemma 1.11;

(iii) any diagonal matrix is both upper triangular and lower triangular;'® see (1.103)
and (1.104).

The shorthand notation for the diagonal matrix D given by (1.85) is
D = diag(di)k=1:n-
The column form of the diagonal matrix D = diag(di)s=1:n is
D = col(drer)y1in s (1.86)

where ey, is the k-th column of the identity matrix of size n, for k =1:n.
The row form of the diagonal matrix D = diag(di)r=1:n is

D = row (dje}) (1.87)

j=1n "

BAn equivalent definition for a diagonal matrix is that a diagonal matrix is a matrix that is
both upper triangular and lower triangular.
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' Lemma 1.10. Let A be an m x n matriz with column form A = col(ax),_,,, and
row form A = 1ow(r;);q.m-

(1) If D = diag(di)k=1:n s a diagonal matriz of size n, then
AD = COl(dkak)k:Ln = (d1a1 1 dzaz | | dnan). (1.88)

(1) If D = diag(d;)j=1.m is a diagonal matriz of size m, then

dir

dara

DA = Tow(djrj)A = . (189)

ji=1lmn

dnrn

(id$) 1f D1 = diog (4"

and Da = diag <d§cz)) are diagonal matrices, then
ji=lm 1in

(D1AD2)(j, k) = dVdPAGk), Vi=1:m, k=1:n (1.90)

Proof. (i) Let D = col(drer),_,., be the column form of the diagonal matrix D,
where ey, is the k-th column of the identity matrix of size n. Recall from (1.26) that
Aey = ax, for all k = 1 : n. Then, using (1.11), we find that

AD = col (A . dkek)k:l:n = COl (dk . Aek)k:l:n = COl (dkak)kzlm .
(i) Let D = row (dje‘;)j=1:m

the j-th column of the identity matrix of size m. Recall from (1.27) that etA =r;,
for all j = 1:m. Then, using (1.12), we find that

be the row form of the diagonal matrix D, where e; is

DA = row (dje§ - A) j=lm

j=1lm =L

= row (d;-e;A) _, = row(d;r;)
(iii) Let
Dy = row (d;l)(eg-l))t>

and D2 = col (df)ef))

ji=lim k=1:n

be the row form of the diagonal matrix D; and the column form of the diagonal

matrix Da, respectively, where eg-l)

m and e(z) is the k-th column of the identity matrix of size n.
Let 1 < j<mand 1<k <n arbitrary. Recall from (1.14) that the entry (5, k)
of the matrix D1AD; is

is the j-th column of the identity matrix of size

(D1AD2)(j, k) = (dg.”(ej.l))‘) A (df’e}j”) = dDd® (eM)eae?).  (L91)

Recall from (1.26) that Ae( ) = ak. Since ax = (A(4,k))i=1:m, we find using (1.5)
that

@) 4e = (M)far = S eP@DAGK) = AG,k), (1.92)
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since eg.l)(z') =0 for any % # j and e§1)(j) =1.
From (1.91) and (1.92), we conclude that
(D1AD2)(j, k) = dSPdPAGLk), Vi=1:m, k=1:n.
O

Lemma 1.11. The product of two diagonal matrices of the same size is a diagonal
matriz. Also, products of diagonal matrices are commutative.

In other words, if D1 = diag (d,(cl)) and Dy = diag (dg))k . are diagonal

matrices, then

DiDs = diag (d(kl)d,(f)) (1.93)

=l:n

and D1D2 = D2D1.

Proof. Let Dy = diag (dg))
The column form of Dy is Dy = col (d,(vl)ek) i , and, using (1.88), we find that
k=1:n

and D, = diag (d% be diagonal matrices.
€\ &k

=lin k=1n

DD

I

col (- dVev) = col (dVaf?es)

k=1:n
diag (dgﬂd;”)

k=1:n

If

k=1:n

By using (1.93) for D1 = Dz and Dz = Dy, we find that

DzD; = diag (dVdf") = diog (d{7d(’) = DiDy,

k=ln k=l:n

and we conclude that products of diagonal matrices are commutative. O
Lemma 1.12. (i) A diagonal matriz is nonsingular if and only if all its entries on
the main diagonal are nonzero.

In other words, the matriz D = diag{dk)k=1.n 1s nonsingular if and only if dx # 0
forallk=1:n.

(i) If D = diag(dik)k=1:n s a nonsingular diagonal matriz, then

D' = diag (%) : (1.94)
k=1ln

Proof. (i) Let D = diag(dx)rx=1:n be a diagonal matrix. Then, det(D) = [I7_, dx;
cf. (10.1). From Theorem 1.2, we conclude that the matrix D is nonsingular if and
only if dp 0 forallk=1:n. :

(i) Let D™' be the matrix given by (1.94); recall that dx # 0 for all k= 1: n, since
D is nonsingular. From (1.93), we find that

D D' = diag (dk~di) = diag(Dyoy, = 1,
k/ k=1in

and therefore D! is the inverse matrix of D; cf. Lemma 1.6. a
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1.4.1 Converting between covariance and correlation matrices.

The covariance matrix Yx and the correlation matrix Qx of n nonconstant random

variables X1, Xo, ... X, are the n X n matrices given by
EX(J;k) = COV(XJ"XIC)) V1<jg,k<ng
Qx(j, k) = corr(X;,Xk), V1<, k<n,

where cov(X;, Xk) and corr(X;, Xi) denote the covariance and the correlation of the
random variables X; and Xy, respectively. Recall that

cov(X;, Xk) = ojorcorr(X;, Xk), V1< 4,k<n,
where o; and o are the standard deviations of X; and X, respectively. Thus,
Sx (4, k) = ojorcorr(X;, Xi), V1<j,k<n
Then, from (1.90), it follows that
Yx = Doy Qx Doy, (1.95)

where Do, is the diagonal matrix given by Doy = diag(os)i=1:n.

‘We conclude that, if the standard deviations of the n random variables are known,
then the covariance matrix £x can be uniquely detmmmed from the correlation
matrix Qx by using formula (1.95).

Since 0y # 0 for all 4 = 1 : n, the matrix Doy is nonsingular and (Do)t =

diag (a ) ; see (1.94). Then, from (1.95), we obtain that
i z—ln

Ox = (Do) 'Ex(Doy) ™" (1.96)

Note that

Doy = diag(0:)izim = diag( Ex(i,i)) o (1.97)

since, by definition, o7 = cov(X;:, X;) = Xx(3,4). In other words, the entries of the
matrix Dy, can be obtained from the entries of Yx.

We conclude that the correlation matrix Qx is uniquely determined-by the covari-
ance matrix Yx, and can be computed by using (1.96) and (1.97).

For more properties of covariance and correlation matrices, see section 7.1.

Ezxample: Assume that the covariance matrix of three random variables is

1 0.1 —-06

Yx = 0.1 025 05
—0.6 0.5 4
Note that
o1 =/2x(,1) =1; 02=+/%x(2,2)=0.5; o03=1+2x(3,3)=2.
1 0 0 1 0 0
Thus, Doy = { 0 % 0 | and (Do) '=| 0 2 0 ). From (1.96), we find
0 0 2 00 1
that the correlation matrix of the three random variables is
1 0.2 -03
Ox = (Doy) "Ex(Doy)™ " = 02 1 05 |. O

—0.3 0.5 1
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Ezample: Assume that the correlation matrix of three random variables with stan-
dard deviations o1 = 2, 02 = 1, and. 03 = 0.9, is

1 0.15 0.2

Qx = 0.15 1 0.1
-0.2 0.1 1
. 2 0 0
Then, Doy = 01 o , and, from (1.95), we conclude that the covariance
0 0 09

matrix of the three random variables is

4 03 —0.36
Sx = DoxQxDoy = 03 1 009 |. O

-0.36 0.09 0.81

Formulas similar to (1.95) and (1.96) can also be derived for sample covariance
matrices and sample correlation matrices; see (1.99) and (1.100), respectively.
Denote by 7; = +/var(X;) the sample standard deviation of X, for i = 1: n.
Then, the sample correlation of X; and Xy is
(X, Xe) = KX vy Gpcn
‘ Ji0k

where ¢ov(X;, X&) is the sample covariance of X; and Xy given by (1.31).
The sample covariance matrix Yx and the sample correlation matrix Qx of the

random variables X1, X2, ... X, are the n X n matrices given by
Sx(j k) = X5 Xe), V1< k<n;
Qx(j,k) = &om(X;,Xe), V1<j4,k<n.
If
Doy = diag(d:)iz1m = diag (\/ix(i,i)) ) (1.98)
then, o
Sx = Doy OxDoy; (1.99)
Ox = (Do) 'Sx(Doy)™ . (1.100)

Ezample (continued):

The sample covariance matrix Sx of the daily returns of AAPL, FB, GOOG, MSET,
YHOO between 1/11/2013 and 1/29/2013 is given by (1.44). The diagonal matrix

of the standard deviation of the daily returns ﬁax = diag ( ix(i, z)) is

i=1:5
0.0426 0 0 0 0
~ 0 00254 0 0 0
Doy = 0 0 0.0194 0 0 (1.101)
0 0 0 0.0072 0
0 0 0 0 0.0147
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* From (1.100), and using (1.44) and (1.101), we find that the sample correlation matrix
Qx of the daily returns of AAPL, FB, GOOG, MSFT, YHOO between 1/11/2013
and 1/29/2013 is*®

1 —-0.0087 —-0.0736 ~—0.0615 —0.2002
N —0.0087 1 0.1075  —0.0506  0.2929
Qx = —0.0736  0.1075 1 0.5614 0.0591 . 0O (1.102)
—0.0615 —-0.0506 0.5614 1 0.0250
—0.2002  0.2929 0.0591 0.0250 1

1.5 Lower triangular and upper triangular matrices.
Tridiagonal matrices.

Definition 1.15. A square matriz is lower triangular if and only if all the entries
of the matriz which are above the main diagonal are equal to 0.
In other words, the n X n matriz L is lower triangular if and only if

LGk) = 0, Vi<j<k<n. (1.103)

Definition 1.16. A square matriz is upper triangular if and only if all the entries
of the matriz which are below the main diagonal are equal to 0.
In other words, the n X n matriz U is upper triangular if and only if

UG,k) =0, Vi<k<j<n. (1.104)

From (1.103) and (1.104), it follows that the transpose of a lower triangular matrix
is an upper triangular matrix and the transpose of an upper triangular matrix is a
lower triangular matrix,2°

The results below follow from (1.103) and (1.104), and can be regarded as column—
based and row—based definitions for lower triangular and upper triangular matrices:

Lemma 1.13. A square matriz of size n is lower triangulor if and only if the first
k — 1 entries of the k-th column of the matriz are equal to 0, for all k =2 : n.
In other words, the n x n matriz L = col(ly),_,., 18 lower triangular if and only if

(i) =0, V1<i<k-1 Vk=2:n (1.105)

A square matriz of size n is lower trianguler if and only if the last n — j entries
of the j-th row of the matriz are equal to 0, for allj =1:(n—1).

In other words, the n x n matriz L = row(r;),_,., is lower triangular if and only if

ri(i)=0, Vj+1<i<n Vj=1:(n—1). (1.106)

¥Note that, when computing ﬁf’x and Qx from (1.101) and (1.102), respectively, we used the
non—truncated values for the entries of the sample covariance matrix f)x, and not the values from
(1.44) which are rounded at four decimal digits: :

ZOMoreover, a matrix is lower triangular if and only if its transpose is an upper triangular
matrix, and a matrix is upper triangular if and only if its transpose is a lower triangular matrix.
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Lemma 1.14. A square matriz of size n is upper triangular if and only if the last
n — k entries of the k-th column of the matriz are equal to 0, for allk =1:(n—1).
In other words, the n x n matriz U = col(ur)_,., 15 upper triangular if and only if

k(i) =0, Vk+1<i<n, Vk=1:(n—1). (1.107)

A square matriz of size n is upper triangular if and only if the first j — 1 entries
of the j-th row of the matriz are equal to 0, for allj =2 :n.

In other words, the n. x n matriz U = row(r;) 1., 1S upper triangular if and only if

7)) =0, V1<i<j—1,Vj=2:n (1.108)

Note that the sum of two lower triangular matrices is a lower triangular matrix,
the sum of two upper triangular matrices is an upper triangular matrix, and the
result of multiplying a lower triangular (or an upper triangular) matrix by a con-
stant is a lower triangular (or, respectively, an upper triangular) matrix. Thus, any
linear combination of lower triangular matrices is lower triangular and any linear
combination of upper triangular matrices is upper triangular.

Lemma 1.15. (i) The product of two lower triangular matrices is lower triangular.

(i) The product of two upper triangular matrices is upper triangular.

Proof. (i) Let L1 = col (l,(cl))k*l and Lz = col (l’?))k . be lower triangular
matrices. Recall from (1.105) that’ o
() =0, 1<j<k-1,Vk=2:m; (1.109)
D) =0, 1<j<k-1,Vk=2:n. (1.110)

Recall from (1.11) that

LiLy = col (Lulf?)

=1n

Thus, the k-th column of 1Lz is Lll,(f). Using (1.7) and the column form L; =
col (l,(cl)) of L, we obtain that
k=1l:n

P = Y PG 6P = Y iP6) Y, (1.111)
j=1 j=k

since l,(f)(j) =0 for all j such that 1 <j <k —1; cf. (1.110).
Let i such that 1 <i<k—1. Ifk < j <n,then 1 <i<j—1and, from (1.109),
it follows that
@) =0, VE<j<n (1.112)

Then, from (1.111) and (1.112), we find that

(L)) = Y PG EVE) =0, VI<i<k-L
i=k
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We conclude that the first & — 1 entries of Lll,(f), which is the k-th column of the
matrix L1 Ls, are equal to 0. Therefore, from Lemma 1.13, it follows that LiLs is a
lower triangular matrix. '

(ii) Let Uy and Us be upper triangular matrices of the same size. Recall that a matrix
is upper triangular if and only if its transpose is a lower triangular matrix. Thus,
U? and U} are lower triangular matrices. The matrix UsU{ is also a lower triangular
matrix, since we already proved that the product of two lower triangular matrices is
lower triangular. Since (U1Up)' = UsUY, see (1.24), it follows that the transpose of
the matrix U1U; is a lower triangular matrix. We conclude that U,U> is an upper
triangular matrix. O

Recall from (10.3) and (10.4), respectively, that the determinant of a lower trian-
gular matrix L is equal to the product of all its entries on the main diagonal, and
the determinant of an upper triangular matrix U is equal to the product of all its
entries on the main diagonal, i.e.,

det(L) = ﬁL(i,i); (1.113)
det(U) = ﬁU(i,vZ). (1.114)

Lemma 1.16. (i) A lower triangular matriz L is nonsingular if and only if all its
entries on the main diagonal are nonzero, i.e., if and only if

L(i,7) # 0, YVi=1:n.
(1) An upper triangular matriz U is nonsingular if and only if all its entries on the
main diagonal are nonzero, i.e., if and only if

U(i,i) # 0, Yi=1:n.
Proof. These results follow from (1.113) and (1.114), and from the fact that a matrix
is nonsingular if and only if its determinant is nonzero; cf. Theorem 1.2. O
Lemma 1.17. (i) The inverse of an upper triangular matriz is upper triangular.
(i) The inverse of a lower triangular matriz is lower triangular.

A proof of this result can be found in Section 10.7; see Lemma 10.18.
Definition 1.17. The n x n matriz A is banded of band m if and only if

AGR) =0, V1< 4,k <n with]j~ K >m.on 1.3 TR

Note that a banded matrix of band 0 is a diagonal matrix, since A(j,k) = 0 for
all j and k with |j — k| > 0 is equivalent to A(j, k) = 0 for all j # k.

Ezample: The positions of the entries of a 6 x 6 banded matrix with band 2 which
could be nonzero are denoted by “x” in the matrix below:

X x x 0 0 0
X x x x .0 0
X X X x x 0
0 x X X X X =
0 0 X X x X
0 0 0 x x x


Highlight

Highlight

Highlight

Highlight

Highlight


30 CHAPTER 1. VECTORS AND MATRICES

A matrix of band 1 is called a tridiagonal matrix and appears frequently in prac-
tical applications.

Definition 1.18. The n X n matriz A is tridiagonal if and only if
A(G,k) =0, V1< j,k<nwith|j—k > 1,

or, equivalently, if and only if the only nonzero entries of A could be the main diagonal
entries A(i, i), for i = 1 : n, the upper diagonal entries A(i,i+1), fori=1:(n—1),
and the lower diagonal entries A(i,i — 1), fori=2:n.

Erxample: The positions of the entries of a 6 x 6 tridiagonal matrix which could be
nonzero are denoted by “X” in the matrix below:

0

oo o X X
oo o X X X
OO X X X ©
O X X X O

X X X ooo
X X OO O

1.6 References

Several linear algebra books are close in spirit to our approach emphasizing nu-
merical implementation and applications: Gilbert Strang’s “Introduction to Linear
Algebra” [41] and “Linear Algebra and Its Applications” [40] and Peter Lax’s “Lin-
ear Algebra and Its Applications” [26] are three acclaimed such texts; also, Strang’s
OpenCourseWare MIT videos are a remarkable resource. A classical approach to -
graduate level linear algebra can be found in Horn and Johnson [22].

The numerical analysis approach to linear algebra was pioneered by the classical
monograph of Golub and Van Loan [18], and further solidified by Demmel [13]. The
insightful numerical linear algebra textbook by Trefethen and Bau [43] presents the
intuition behind numerical linear algebra methods.

Some of the exercises contained in this chapter and throughout the book are
frequently asked in interviews for positions requiring quantitative skills; see Stefanica,
Radoici¢, and Wang [39] for more interview-style questions.
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1.7 Exercises

1. Let
1 -1 2 5 4
3 2.1 4 2
A = 0 1 2 -1 3
-5 4 2 -4 3

Show that the column rank and the row rank of A are both equal to 3.

2. Let z and y be column vectors of size n, and let I be the identity matrix of size
n.
(i) If y*z # —1, show that

1 ¢

I Bl = T - ——— 3yt
(I+=zy) T Y

In other words, show that
I~ L zyt ) ([ +ay') = I
14 ytz

(ii) Show that the matrix I + xy® is nonsingular if and only if y'z # —1.

3. (i) Use induction to show that

n t n
(H Ai) = H Anyisi
i=1 i=1
for any m; X n; matrices :A;, 1 =1:n, with n; = mip1 foréi =1:(n ~ 1).

(ii) Show that
n -1 n
(n Ai) - A
i=1 i=1

for any nonsingular square matrices A; of the same size.

4. Let D = diag(d;)i=1:n be a diagonal matrix of size n with distinct diagonal
entries, i.e., such that d; # dg, for any 1 < j # k < n. If A is a square matrix
of size n, show that AD = DA if and only if the matrix A is diagonal.

5. Use the fact that D1 Do = D2D; for any two diagonal matrices D1 and D2 of
the same size to show that

D; =

1 z

Dy,

n
= 1

n

k2

for any one-to-one function p: {1,2,...n} — {1,2,...n}, where D, i = 1 : m,
are diagonal matrices of the same size.
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. (i) Let A be an n X n matrix and let L be an n X n nonsingular lower trian-

gular matrix. Show that, if LA is a lower triangular matrix, then A is lower
triangular. Show that, if AL is a lower triangular matrix, then A is lower
triangular.

(ii) Let A be an n x n matrix and let U be an n X n nonsingular upper triangular
matrix. Show that, if UA is an upper triangular matrix, then A is upper
triangular. Show that, if AU is an upper triangular matrix, then A is upper
triangular.

. Let A be a nonsingular matrix, and let k be a positive integer. Define A™* as

the k—th power of the inverse matrix of 4, i.e., let A7 = (A_l)k. Show that
this definition is consistent, i.e., show that

A¥ AR = AR AR =

. (i) Let
0 0 0 0
_ 3 0 0 0
M=11 _1900
-1 2 1 0
Compute M2, M3, M*.
(ii) Let
1 0 0 0
3 1 0 0
C =1I+M = 1 -1 1 0
-1 2 1 1

Compute C™, where m > 2 is a positive integer.

Hint: Recall that, if A and B are square matrices of the same size such that
AB = BA, then the following version of the binomial formula holds true:

(A+B)™ = i( T ) APB™I (1.115)

=0

where m is a positive integer and the binomial coefficient ( T ) is given by

(%) = 7o

where k! =1-2-... k. Also, note that A® = B% =17,

. Let L be an n X n lower triangular matrix with entries equal to 0 on the main

diagonal, i.e., with L(4,7) =0for i =1:n.
(i) Show that L™ = 0;
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10.

11.

12.

13.

(ii) Compute (I + L)™ in terms of L, L?, ..., L™, where m > n is a positive
integer.

Hint: Use the binomial formula (1.115).

Let A and B be square matrices of the same size with nonnegative entries and
such that the sum of the entries in each row is equal to 1. Show that the matrix
AB has the same properties, i.e., show that all the entries of the matrix AB
are nonnegative and the sum of the entries in each row of AB is equal to 1.

Note: A matrix with nonnegative entries such that the sum of the entries in
each row is equal to 1 is called a probability matrix.

The covariance matrix of five random variables is

1 —0.525 1.375 —-0.075 —-0.75
-0.625 2.2 0.1875 0.1875 —0.675
z = 1.375  0.1875 6.25 0.4375 —1.875
-0.075 0.1875 0.4375 0.25 0.3
-0.76 —-0.675 —1.875 0.3 9

Find the correlation matrix of these random variables.

The correlation matrix of five random variables is

1 -0.25 0.15 -0.05. -0.30
—0.25 1 —-0.10 -0.25 0.10
Q = 0.15 -0.10 1 0.20 0.05

-0.05 -025 0.20 1 0.10
-0.30 0.10 0.05 0.10 1

(i) Compute the covariance matrix of these random variables if their standard
deviations are 0.25, 0.5, 1, 2, and 4, in this order.
(ii) Compute the covariance matrix of these random variables if their standard

deviations are 4, 2, 1, 0.5, and 0.25, in this order.

The file indeces-jul26-aug9-2012.zlsz from fepress.org/nla-primer contains the
July 26, 2012 — August 9, 2012 end of day values of Dow Jones, Nasdaq, and
S&P 500.

(1) Compute the daily percentage returns of the three indices over the given
time period.

(ii) Compute the covariance matrix of the daily percentage returns of the three
indices.

(iii) Compute the daily log returns of the three indices over the given time
period.

(iv) Compute the covariance matrix of the daily log returns of the three indices.
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14.

15.

16.
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Note: The percentage return and the log return between times ¢; and ¢ of an
asset with price S(¢) at time ¢ are given by

S(tz) — S(t1) and  In (S(m)) ,

S(t1) S(t1)

respectively.

The file indices-july2011.zlsz from fepress.org/nla-primer contains the January
2011 — July 2011 end of day values of nine major US indeces.

(i) Compute the sample covariance matrix of the daily percentage returns of
the indeces, and the corresponding sample corelation matrix.

Compute the sample covariance and correlation matrices for daily log returns,
and compare them with the corresponding matrices for daily percentage re-
turns.

(ii) Compute the sample covariance matrix of the weekly percentage returns of
the indeces, and the corresponding sample corelation matrix.

Compute the sample covariance and correlation matrices for weekly log returns,
and compare them with the corresponding matrices for weekly percentage re-
turns.

(iii) Compute the sample covariance matrix of the monthly percentage returns ’
of the indeces, and the corresponding sample corelation matrix.

Compute the sample covariance and correlation matrices for monthly log re-
turns, and compare them with the corresponding matrices for monthly percent-
age returns.

(iv) Comment on the differences between the sample covariance and correlation
matrices for daily, weekly, and monthly returns.

In three months, the value of an asset with spot price $50 will be either $60
or $45. The continuously compounded risk-free rate is 6%. Consider the one
period market model with two securities, i.e., cash and the asset, and two states,
i.e., asset value equal to $60 and asset value equal to $45, in three months.

(i) Find the payoff matrix of this model.
(i) Is this one period market complete, i.e., is the payoff matrix nonsingular?
(iii) How do you replicate a three months at-the-money put option on this

asset, using the cash and the underlying asset?

In six months, the price of an asset with spot price $40 will be either $30, $35,
$40, $42, $45, or $50. Consider a one period market model with six states in
six months corresponding to the six possible values of the asset in six months,
and with the following four securities:

e cash;
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® asset;
e six months at-the-money call option with strike $40 on the asset;

e six months at-the-money put option with strike $40 on the asset.

The continuously compounded risk—free interest rate is constant and equal to

6%.
(i) Find the payoff matrix of this model.
(ii) Is this one period market model complete?

(iii) Are the four securities non-redundant?






Chapter 2

LU decomposition and linear systems solutions.
Discount factors computation. Cubic spline
interpolation.

The numerical solution of linear systems.
Forward substitution. Backward substitution.
Finding discount factors using forward substitution.

LU decomposition without pivoting. Existence and uniqueness. Pseudocode and
operation count. ’

Linear solvers using the LU decomposition without pivoting.

LU linear solvers for tridiagonal matrices.

LU decomposition with row pivoting. Pseudocode and operation count.
Linear solvers using the LU decomposition with row pivoting.

Solving linear systems corresponding to the same matrix.

Finding discount factors using the LU decomposition.

Cubic spline interpolation. Cubic spline interpolation for zero rate curves.

2.1 The numerical solution of linear systems

A fundamental problem in numerical analysis is solving linear systems, i.e., finding
a vector = such that

Axr = b, (2.1)

where A is a square matrix and b is a column vector of size equal to the number of
columns of A.

The numerical solution of the problem (2.1) requires finding efficient numerical
algorithms to compute the vector z such that Az = b, given the matrix A and the
column vector b. These numerical algorithms will also address implicitly the question
whether the matrix A is nonsingular, which is required for the linear system (2.1) to
have a unique solution.

37
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The numerical methods for solving linear systems are of two fundamentally dif-
ferent types:

o Direct Methods: The solution of the linear system Az = b is found by computing the
LU decomposition with pivoting of the matrix A, or the Cholesky decomposition of
A, if the matrix A is symmetric positive definite, and then solving two linear systems
corresponding to lower triangular matrices and to upper triangular matrices.

o Jterative Methods: The solution of the linear system Az = b is obtained recursively.
The iteration is stopped once an approximate solution with prescribed precision is
found. Examples of such methods are Jacobi iteration, Gauss-Siedel iteration, and
SOR (Successive Overrelaxation).

All the methods mentioned above are much more efficient from a numerical stand-
point than a computation of the inverse matrix A™Y and finding x by using the
matrix-vector multiplication z = A™'b.

In practice, direct methods are faster for solving linear systems arising from dis-"
cretizations of two dimensional problems, while iterative methods are faster for solv-
ing linear systems corresponding to three dimensional problems (or higher dimen-
sional problems). We only discuss direct methods herein: see sections 2.4 and 2.6 for
the LU decomposition, and section 6.1 for the Cholesky decomposition.

Note that linear systems corresponding to nonsingular diagonal matrices have
straightforward solution. If D is a nonsingular diagonal matrix of size n, i.e., with
D(j,5) # 0 for all j = 1: n, see Lemma 1.12, then the solution z to Dz = b, where
bis an n X 1 vector, is given by

) b(3) ‘
z(j) = — =, Vi=1l:n.
D(3,5)’

Linear systems corresponding to lower triangular matrices or to upper triangular
matrices can also be solved directly, by using the Forward Substitution, if the matrix
is lower triangular, or by using the Backward Substitution, if the matrix is upper
triangular; see section 2.2 and section 2.3, respectively.

2.2 Forward substitution
Let L be a nonsingular lower triangular matrix of size n, i.e., assume that
L(j,k)=0,V1<j<k<n; L(,i)#0, V1<i<n (2.2)

see Lemma 1.16. Let b be an n x 1 column vector, and let = be the n X 1 vector
which is the unique solution to the linear system Lz =b.

Forward Substitution is a numerical algorithm designed to compute the entries of
z efficiently, and is detailed below.

By multiplying the first row of L by z, and using the fact that L(1, k) = 0 for all
k = 2 : n, since L is lower triangular, see (2.2), we obtain that

SLOL R = L, Da(1) = b,

k=1
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" and therefore

2(1) = ; (2.3)

note that L(1,1) # 0, since L is nonsingular. '

Moving forward to computing z(2), multiply the second row of L by z, and use
the fact that L(2,k) = 0 for all kK = 3 : n, since L is lower triangular, see (2.2), to
obtain that

iéL@de@ = L2, Da(l) + L2,2)z2) = b2). . (24

k=1
By solving (2.4) for z(2), we find that

b(2) — L(2, Da(1)

z(2) = I(2.2) ;

(2.5)
note that I(2,2) # 0, since L is nonsingular. Since the value of #(1) is known from
(2.3), the value of z(2) can be computed from (2.5).

It is important to note that formula (2.3) for (1) is never substituted into the for-
mula (2.5) for 2(2) in order to obtain a closed formula for (2) in terms of the entries
of the matrix L. The numerical value of x(2) is computed directly by substituting
into (2.5) the numerical value for (1) already determined from (2.3).

We continue to move forward until all the entries of  are computed, as follows:
Assume that the values of z(1), 2(2), ..., z(j — 1) have been computed, where
2 < j < n. To compute z(j), multiply the j-th row of L by x, and use the fact that
L(j,k) =0 for all k = (j + 1) : n, since L is lower triangular, to obtain that

dOLGk)zk) = Y LG k)zk) = b()

k=1 k=1
Thus, 4
L(G,)x(G) + > LG, kxk) = b(). (2.6)
k=1

By solving (2.6) for x(j), we find that

b(j) — 341 LG, k)a(k)
L(4,3) ’

note that L(j,4) # 0, since L is nonsingular. Thus, given (1), z(2), ..., z(j — 1),
the value for z(j) can be computed using (2.7).

The pseudocode for Forward Substitution can be found in Table 2.1.

The efficiency and running time of algorithms can be estimated by computing
the operation count of the algorithm. Throughout this book, we will count each
arithmetic operation, e.g., addition, multiplication, to obtain the operation count.

z(j) =

2.7)

Lemma 2.1. The operation count for the Forward Substitution algorithm applied to
a lower triangular matriz of size n is

n® + O(n). (2.8)
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Table 2.1: Pseudocode for Forward Substitution

Function Call:
x = forward_subst(L,b)

Input: .
L = nonsingular lower triangular matrix of size n
b = column vector of size n

Output:
z = solution to Lx = b

(1) = ity
forj=2:n
sum = 0;
fork=1:(j—-1)
sum = sum + L(j, k)z(k);

end
. b(4)—
z(j) = W,
end

Proof. Computing x(1) requires 1 operation. At step j, the “for” loop

fork=1:(j-1)
sum = sum + L(j, k)z(k);
end

to compute the term sum requires 2(j — 1) operations. Thus, the “for” loop

forj=2:n
sum = 0;
fork=1:(j—-1)
sum = sum + L(j, k)z(k);

end
o(j) = ¥,
end

to compute z(j) requires 2(j — 1) + 2 = 2j operations.
Then, the total number of operations required by the Forward Substitution is

1+ 2 = Y 251 = 271(”2L1)—n =nl+n—1 = n + O(n), (2.9)
7=2

=1

see (10.78), since 307, j = ﬂ”;—l); see, e.g., section 10.3.1 from Stefanica [36]. O

We conclude this section with the Forward Substitution pseudocode corresponding
to a lower triangular bidiagonal matrix, see Table 2.2, which will be used for solving
linear systems corresponding to tridiagonal matrices; cf. section 2.5.1 and section 6.3.

Let L be an n X n lower triangular bidiagonal matrix, i.e., a matrix whose only
nonzero entries could be the main diagonal entries L(j,7), for j = 1 : n, and the
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Jower diagonal entries L(j,j — 1), for j = 2 : n. Then, the recursion formula (2.7)
simplifies to

()~ LG, j-Dz(G—1)

L(,7) ’
which corresponds to the reduced version of the Forward Substitution pseudocode
from Table 2.1 included in Table 2.2.

2(G) =

Table 2.2: Forward Substitution for lower triangular bidiagonal matrices

Function Call:
z = forward.subst_bidiag(L,b)

Input:
L = nonsingular lower triangular bidiagonal matrix of size n
b = column vector of size n

Output:
z = solution to Lx = b

forj=2:n
. b(j)—L(j,j—Da(i—1) .
z(j) = (4 (Ial(ﬂj’jl))w(y )’

The operation count for the Forward Substitution for lower triangular bidiagonal
matrices is

1+3(n—1) = 3n—2. (2.10)

2.2.1 Finding discount factors using forward substitution

The value of a bond is equal to the sum of the present values of all its future cash
flows. Therefore, known prices of several bonds provide information regarding the
discount factors corresponding to all the cash flow dates of the bonds.

If the number of cash flow dates is higher than the number of bonds, then there
is not enough information to uniquely determine the discount factors. If the number
of bonds is higher than the number of cash flow dates, there is a redundancy of data
and arbitrage opportunities may exist. :

However, if the number of cash flow dates is equal to the number of bonds, and
if there are no redundancies (i.e., if no bond can be synthesized by taking positions
in the other bonds), then it is possible to uniquely identify the discount factors
corresponding to the cash flow dates (and the corresponding values of the zero rates)
from the bond prices. ‘

In this section, we present an example where.the discount factors can be computed
using forward substitution. A more general example requiring LU decomposition for
computing the discount factors can be found in section 2.7.2.

Recall that the value of a bond is equal to the sum of the present value of all its
future cash flows. In other words, if B is the value of a bond with future cash flaws
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ci to be paid at times #;, and if Disc(t;) are the discount factors corresponding to
time t;, for 4 = 1 : n, then

B = > cDisc(ts). (2.11)
i=1

Note that the discount factor Disc(t:) at time #; is uniquely determined by the risk-
free zero rate r(0, t;) at time ¢;. For example, if interest is continuously compounded
(which is assumed to be the case throughout the book, unless otherwise specified),

then
Disc(t:) = e 4" = exp (—t:r(0,%:)). (2.12)

For the example below, recall that an annual coupon bond with face value $100,
coupon rate C, and maturity T' (measured in years) pays the holder of the bond a
coupon payment equal to C - 100 every year, except at maturity. The final payment
at maturity T is equal to the face value of the bond plus one coupon payment, i.e., -
{1+ €)100. For example, an annual coupon bond with 15 months to maturity and
coupon rate 5%, i.e., C = 0.05, has two cash flow dates, in 3 and in 15 months,
corresponding to t1 = 13—2 = %, and t2 = % = %, respectively. The corresponding
cash flows are ¢; = 5 and c2 = 105.

Ezample: The prices of the following annual coupon bonds with face value $100 are
given:
Bond Maturity Coupon Rate Bond Price

1 year 0 $98
2 years 6% $104
3 years 8% $111
4 years 5% $102

The cash flows and the cash flow dates of the bonds are recorded in the table below:

Maturity | Cash Flow & Date

1 year $100 in 1 year
2 years $6 in 1 year

$106 in 2 years
3 years $8 in 1 year

$8 in 2 years
$108 in 3 years
4 years $5 in 1 year
$5 in 2 years
$5 in 3 years
$105 in 4 years

Note that the four bonds have exactly four cash flow dates, i.e., 1 year, 2 years, 3
years, and 4 years. For i =1:4, denote by d; the discount factor corresponding to
time equal to 4 years. Using formula (2.11) for the values of the bonds, we find that

98 = 100d;
104 = 6di+ 106dq;
111 = 8di+ 8d2 + 108ds;

102 = 5di + 5da + 5ds + 1056d4.
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" This linear system can be written in matrix notation as Ld = b, where L is a lower
triangular matrix, and d and b are column vectors given by

0 0 0 0 da 98

[ 6 106 0o o do [ 104
L=1 g g5 108 o | 9=\ 4 |’ "= 11
5 5 5 105 ds 102

The solution of the linear system Ld = b is found using forward substitution,® i.e.,

0.98

0.9257
0.8866
0.8385

d = forward_subst(L,b) =

Formula (2.12) can be used to find the corresponding continuously compounded zero
rates: ’

dy = Disc(1) = "D = 1£(0,1) = —In(d1) = 0.0202 = 2.02%;
dz = Disc(2) = e ¥®?  — 7(0,2) = _Ind2) _ 0386 — 3.86%;
ds = Disc(3) = ¢ ¥ — 7(0,3) = _In(ds) _ '0.0461 = 4.01%;
ds = Disc(4) = e ¥ = 7(0,4) = —% = 0.0440 = 4.40%. [

2.3 Backward substitution
Let U be a nonsingular upper triangular matrix of size n, i.e., assume that

UG, k) =0,V1<k<j<n; U@,i)#0, V1<i<n; (2.13)
see Lemma 1.16.

Let b be an n x 1 column vector, and let % be the n x 1 vector which is the unique
solution to the linear system Uz = b.

Backward substitution is a numerical algorithm designed to compute the entries

of z efficiently, as detailed below.

1Without using the routine forward subst, d1, da, d3, and da4 can be obtained as follows:

98

di = — = 0.98;

100

104 — 64
do = 1 = 0.9257;

106

111 ~ 8d; — 84

dy = —— L7772 .. (.8866;
108

102 — 5dy — 5dp — 5d

da = 1 2 S = 0.8385.

105
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By multiplying the n-th row of U by z, and using the fact that U(n, k) = 0 for all
k=1:(n—1),since U is upper triangular, see (2.13), we obtain that

K

Uln,k)z(k) = U(n,n)x(n) = b(n),

=
i

1

and therefore

b(n)

U(n,n)’

z(n) =

note that U(n,n) # 0, since U is nonsingular.

Moving backward to computing z(n — 1), multiply the (n — 1)-th row of U by
z, and use the fact that U(n — 1,k) = 0 for all k = 1 : (n — 2), since U is upper
triangular, see (2.13), to obtain that

(2.14)

iU(n—l,k)x(k} = Un—1,n—Dz(n—-1)+Un-1,n)z(n) = bln—1). (2.15)

By solving (2.15) for z(n — 1), we find that

bin—1) —U(n — 1,n)m(n);

sn—1) = Un—1,n-1)

(2.16)
note that U(n — 1,n — 1) # 0, since U is nonsingular. Since the value of z(n) is
known from (2.14), the value of z(n — 1) can be computed from (2.16).

We continue to move backward until all the entries of z are computed, as follows:
Assume that the values of z(n), z(n — 1), ..., =(j + 1) have been computed, where
n—12>j > 1. To compute z(j), multiply the j-th row of U by , and use the fact
that U(j,k) = 0 for all k = 1: (j — 1), since U is upper triangular, to obtain that

n

> UG, k)atk) = ZUM:):B = b(j).

k=1
Thus,
UG, =G + Y, UGkz(k) = b(j). (2.17)
k=j+1
By solving (2.17) for z(7), we find that

b(j) - ZZ:;‘H U(j, k)w(k)
U(4,4) ’
note that U(j, ) # 0, since L is nonsingular. Thus, given z(n), z(n—1), ..., z(j+1),
the value for z(§) can be computed using (2.18). -
The pseudocode for Backward Substitution can be found in Table 2.3.

The operation count for Backward Substitution is n® + O(n), the same as for
Forward Substitution; the proof of the result below is similar to that of Lemma 2.1:

2(j) = (2.18)

Lemma 2.2. The operation count for the Backward Substitution algorithm applied
to an upper triangular matriz of size n is

n? + On). (2.19)
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Table 2.3: Pseudocode for Backward Substitution

Function Call:
z = backward_subst(U,b)

Input:
U = nonsingular upper triangular matrix of size n
b = column vector of size n

Output:
z = golution to Uz = b

b
z(n) = gy

forj=(n-1):1
sum = 0;
fork=(G+1):n
sum = sum + U(j, k)z(k);

end _ .
s(3) = L,
end

The relevance of Forward Substitution and Backward Substitution is highlighted
by the fact that, for a nonsingular matrix A that 'isynot upper triangular nor lower
triangular, a solution to the linear system Az = b can be found without explicitly
computing A™?, by using forward substitution and backward substitution, and the

LU decomposition with row pivoting of A; see section 2.6 and the pseudocode from
Table 2.10 for details.

We conclude this section with the Backward Substitution pseudocode correspond-
ing to an upper triangular bidiagonal matrix, which will be used for solving linear
systems corresponding to tridiagonal matrices; cf. section 2.5.1 and section 6.3.

Let U be an n x n upper triangular bidiagonal matrix, i.e., a matrix whose only
nonzero entries could be the main diagonal entries U(4,5), for j = 1 : n, and the

upper diagonal entries U(j,7 + 1), for j = 1: (n — 1). Then, the recursion formula
(2.18) simplifies to

b(4) —UG,j+ Da(i+1)
U, 3) ’

z(j) =

which corresponds to the reduced version of the Backward Substitution pseudocode
from Table 2.3 included in Table 2.4.

The operation count for the Backward Substitution for upper triangular bidiagonal
matrices is

143n—1) = 3n—2. (2.20)
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Table 2.4: Backward Substitution for upper triangular bidiagonal matrices

Function Call:
x = backward_subst_bidiag(U,b)

Tnput:
U = nonsingular upper triangular bidiagonal matrix of size n
b = column vector of size n

Output:
x = solution to Uz =b

2(n) = ety
forj=(n-1):1
b=V, i+De(4D)
z(j) = 3} U&(JJ?; G+1)
end

2.4 LU decomposition without pivoting

The LU decomposition of a matrix provides a computationally efficient way for solv-
ing linear systems; see section 2.5 for details. While the LU decomposition without
pivoting does not exist for every nonsingular matrix, it is often used in practice, e.g.,
for tridiagonal matrices; see section 2.5.1. Moreover, the LU decomposition without
pivoting contains the main idea for the recursive algorithm behind both the LU de-
composition with row pivoting, which exists for all nonsingular matrices,? and the
Cholesky decomposition; see section 2.6 and section 6.1, respectively.

Definition 2.1. The LU decomposition without pivoting of a nonsingular square
matriz A consists of finding a lower triangular matriz L with all entries on the main
diagonal equal to 1 and a nonsingular upper triangular matriz U such that

A = LU
The L and U matrices are called the LU factors of A.

Note that requiring the diagonal entries of the matrix L to be equal to 1 1s neces-
sary for the uniqueness of the LU decomposition: The n x n matrix A has n? entries,
while the matrix L has ﬂl’—tl—l entries below the main diagonal and on the main
diagonal, and the matrix U has 2(124;1_2 entries above the main diagonal and on the
main diagonal, for a total of ”("'H) + "(”H) = n? 4+ n entries. These entries can be
thought of as unknowns when looklng for the LU decomposition of A. Thus, we have
n? 4 n unknowns to be found given the n? entries of A. Requiring the n ent1 ies of L
on the main diagonal to be equal to 1 reduces the number of unknowns to n?, which
creates the framework for the LU decomposition to be unique; see Theorem 2 2.

2Note that, throughout this book, “LU decomposition” will refer to the LU decomposition
without pivoting, unless otherwise specified.
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Definition 2.2. Let A be an n x n matriz. The leading principal minors of A are
the determinants of the i X i matrices A; = A(1 : 4,1 : i) made of the i* upper lefi
entries of A, for 1 <i<n.®

Theorem 2.1. A matriz has an LU decomposition if and only if all the leading
principal minors of the matriz are nonzero. '

Proof. The proof of this result is of no further relevance herein and can be found,
e.g., in Datta [12]. O

For the LU decomposition to be consistent, it should be unique, and this is, indeed,
the case:

Theorem 2.2. If it exists, the LU decomposition without row ptvoting of a matriz
s unique.

The proof of this result can be found in the technical appendix from Chapter 10;
see the proof of Theorem 10.10 from section 10.6.

2.4.1 Pseudocode and operation count for LU decomposition

The L and U matrices from the LU decomposition of a matrix are computed using
a recursive algorithm, one row of U and one column of L &t a time.

Let A be an n x n nonsingular matrix with LU decomposition without pivoting.
We are looking for an n X n lower triangular matrix L with main diagonal entries
equal to 1 and for an n X n upper triangular matrix U such that

LU = A. (2.21)

Ezample: 4 X 4 matriz
For clarity, we include explicit formulations of certain formulas for 4 X 4 matrices. In
particular, formula (2.21) is written as follows if A, L, and U are 4 x 4 matrices:

1 0 0 0 U(L,1) UWL2) U(L,3) U(@,4)
L1 1 0 0 0 U22) U23) U(E24)
L(3,1) L(32 1 0 0 0 U®BS3) U3,4)
L(4,1) L(4,2) L(4,3) 1 0 0 0 U(4,4)

A(1,1) A(1,2) A(1,3) A(1,4) ’

- | AL A(2,2) A(2,3) A(2,4)
= | A(B,1) A(3,2) A(3,3) A(3,4) |’

A(4,1) A(4,2) A(4,3) A(4,4)

since all the main diagonal entries of L are required to be equal to 1.

2 -3 0
3For example, the leading principal minors of the matrix ( 1 1 1 > are

-1 5 =3
s _3 2 -3 0
det(2) = 2; det ( 1 1 ) =15; det 1 1 1 = —22;
. —1 5 -3

see section 5.2.1 for more details and examples.
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To compute the first row of U, we multiply the first row of L by the column k of
U and use the fact that LU = A to obtain that

U(lL,k) = A(LK), Yk=1:n. (2.22)
In particular, for k=1 in (2.22), we find that
U,1) = AQ,1). (2.23)

To compute the first column of L, we multiply the row k of L by the first column
of U and obtain that L(k,1)U(1,1) = A(k,1) for all k =2 :n, and therefore

A1) _ Ak
Lk, 1) = U1 A(LL)]

Vk=1:m (2.24)
see (2.23) for the last equality. Note that the fraction from (2.24) is well defined:
A(1,1) # 0 since A(1, 1) is the first leading principal minor of A and the matrix A
has an LU decomposition; cf. Theorem 9.1 and Definition 2.1.

The other rows of U and columns of L are computed recursively, one row of U
and one column of L at a time, as follows:

To compute the second row of U and the second column of L, write the matrices
Land U as

1 0

L = < L(2:n,1) L(2:m2: n) ) ) (2.25)
U(1,1 U(1,2:
Vo= < (0 : U(2(: n,27?)n) ) ' (2.26)

where L(2 : n,1) = (L(j,1))j=2m 1s an (n — 1) X 1 column vector; U(1,2 :n) =
(U1, k))k=2:n is an 1 X (n — 1) row vector; L(2:n,2:n)= (L(j,k))2<jk<n is the
(n—1) x (n — 1) lower triangular matrix made of the entries from the rows 2, 3,
.., n and the columns 2, 3, ..., of Ly U2 :m,2:n) = (U(4,k))2<s k<n is the
(n—1) x (n—1) upper triangular matrix made of the entries from the rows 2, 3, ...,
n and the columns 2, 3, ..., nof U.
Similarly, write the matrix A as

A 1>1 A 1,2',
A= ( A(Q(: n,)l) A(2(:n,27:L)n) )7 (2.27)

where

A(1,2:n) = (A(1,k))k=2m s an 1 % (n — 1) row vector;
A(2:n,1) = (A(j,1))j=2m Isan- (n — 1) x 1 column vector;
A(2:1,2:n) = (A(J, k))2<ih<n isan (n—1) x (n — 1) matrix.

From (2.25-2.27), it follows that LU = A is equivalent to

1 0 U(1,1 U(1,2:
(L(?:n,l) L(2:n,2:n)>( (0) U(2(:n,27:z)n)> (2.28)

B ALD)  A(L,2:n)

- (A(Z:n,l) A2:m,2:n) ) (2:29)
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By using block matrix multiplication to multiply the rows 2 : n of L by the
columns 2 : n of U, we obtain from (2.28-2.29) that*

L(2:n,1) U(,2:n) + L(2:n,2:n) U(2:n,2:n) = A(2:n,2:n), (2.30)
and therefore
L{(2:n,2:n) U(2:n,2:n) = A(2:n,2:n) — L(2:n,1) U(1,2:n). (231)

From (2.31), we conclude that the matrices L(2 : n,2 : n) and U(2 : n,2 : n)
are the I and U factors from the LU decomposition of the matrix A(2 : n,2 :
n) — L(2 : n,1)U(1,2 : n). The first row of the matrix U(2 : n,2 : n) (which
coincides with the second row of U without its first entry which is equal to 0),
and the first column of the matrix L(2 : n,2 : n) (which coincides with the second
column of L without its first entry which is.equal to 0) are computed from the matrix
A(2:m,2 :n) — L(2: n,1)U(1,2 : n) the same way® as the first row of U and the
first column of L were computed from the matrix A.

Note that, in the implementation of the LU algorithm, we will call computing the
matrix A(2:n,2:n)— L(2 : n,1)U(1,2 : n) “updating” the matrix A(2: n,2 : n),
and will use the notation

A(2:n,2:n) = A(2:n,2:n) = L(2:n,1) U(1,2:n), (2.32)

which means that we overwrite the old entries of A(2 : n,2 : n) by the entries of
A(2:1n,2:n) ~ L(2:n,1)U(1,2: n).

The algorithm continues recursively until all the rows of U and all the columns of
L are computed.

Example: 4 X 4 matriz
For n = 4, we obtain that

A(1,2:n) = A(1,2:4)

( A(L,2) A(1,3) A(1,4) );
A(2,1

A2:n,1) = A(2:4,1) = A(3,

N
=

A2,3) A(2,4)
A(3,3)  A(3,4)
A(4,3) A(4,4)

L(2:n,1) = L(2:4,1) =

A2:n,2:n) = A(2:4,2:4) = (A(?),

=k et [EE—Y

1 0 0
L(3,2 1 0
L(4,2) L(4,3) 1

*Since L(2:n,1) is an (n — 1) x 1 column vector and U(1,2: n) is an 1 X (n — 1) row vector,
it follows that the result of the column vector — row vector multiplication L(2 : n,1)U(1,2 : n)
is an (n — 1) X (n — 1) matrix, see (1.6), which is the same size as the matrices A(2 : n,2: n),
L(2:n,2:n), and U(2:n,2:n). Thus, the matrix dimensions in (2.30) are consistent.

SNote that this step requires division by U(2,2); see also (2.24). The fact that U(2,2) # 0
and therefore the division can be performed is a consequence of the fact that the leading principal
minor det(A(1: 2,1 : 2)) is nonzero; see also an exercise at the end of this chapter.

L(2:n,2:n) = L[(2:4,2:4)
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i

U(1,2:m) = U(1,2:4) (U(1,2) UQ,3) U149 );

( U2,2) U(@2,3) U(24)
U@2:n,2:n) = U(2:4,2:4) = 0 U3,3) UB4) |,
0 0 U(4,4)

" and therefore (2.28-2.29) is written as follows if A, L, and U are 4 x 4 matrices:

1 0 U,y U(1,2:4
(L(2:4,1) L(2:4,2:4))< (0) U(2(;4,2;)4)> (2.33)

A(1,1 A(1,2: 4
= (A(Z( :4,)1) A(2( ;4,2;)4)) (2.34)

From (2.33-2.34), we find by block matrix multiplication the following explicit
form of (2.30) for 4 x 4 matrices:

LE2:41) U@L2:4) + L2:42:4) U@2:4,2:4) = A2:4,2:4),
and therefore

L(2:4,2:4) U@2:4,2:4) = A2:4,2:4) - L(2:41) U1,2:4). (235

The LU decomposition without pivoting algorithm can be implemented recursively
as detailed below; see also the pseudocode from Table 2.5.

Let A be a matrix with LU decomposition without pivoting, and let L and U be the
LU factors of A.

o Compute the first row of U and the first column of L:
fork=1:n
U(1,k) = A(1,k)
(k,1)

Lk, 1) = ;‘}(’;ﬁ

o

end

Note that, in the “for” loop above, we compute L(1,1) = 1, rather than requiring it.
e Update the (n —1) X (n — 1) lower right part of A as follows:

A(2:n,2:n) = A(2:m,2:n) — L(2:n,1) U(1,2:n), (2.36)

see (2.32), which can be written entry by entry as follows:

forj=2:n

fork=2:n
A(j, k) = A(G, k) — E(G, UL, k)
end
end

Every row of U and column of I are thereafter computed recursively from the
latest updated part of the matrix A; see also the 4 X 4 example below. For example,
to compute the i-th row of U and the i~th column of L, we do the following:

e Compute the i-th row of U and the i-th column of L:
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fork=1i:n
Ui, k) = A(i, k)
Lik,i) = 24
end ’

e Update the (n — 1) x (n — %) lower right part of A as follows:

AG@+1:n,i+1:n) = A(i+1:m,i+1:n)
— L+1:n,i) U@i,i+1:n), (2.37)

which can be written entry by entry as follows:

forj=0G+1):n
fork=(+1):n
end

end

Further clarification on the recursive part of the LU decomposition can be found
in the example below for a 4 X 4 matrix.

Erample: Let

2 -1 3 0

-4 5 -7 -2

2 10 -4 -7 | (2.38)
4 -—-14 8 10

Let L and U be the LU factors of A. The entries of the first row of U are given
by (2.22),i.e., U(1,k) = A(3,k) for k=1:4: ‘

A =

U1,1) =2 U(L,2)=-1;, U(L,3)=3 U(L4)=0.

The entries of the first column of L are given by (2.24), ie., L(k,1) = 3({;8 for
k=1:4:

4 -4 ‘ 2 -2

L(1,1)=1; L(2,1)= ) =5 = -2; L(3,1)= oa, ) =5 = -1
4 4
Then, the current forms of L and U are
1 0 0 0 2 -1 3 0
I = -2 1 0 0 U= 0 U((2,2) U(23 U(24)
o -1 L(3,2) 1 o | I 0 U(3,3) U(3,4)
2 L(4,2) L(4,3) 1 0 0 0 U(4,4)
(2.39)

The updated form of the 3 x 3 matrix A(2 : 4,2 : 4) is computed using (2.36), from
A(2:4,2: 4) obtained from (2.38) and with L and U given by (2.39), as follows:

A(2:4,2:4)
= A(2:4,2:4) — L(2:4,1) UQ1,2:4)
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5 -7 -2 —2
- 0 -4 -7 | - -1 ](130
—14 8 10 2
5 ~7 -2 2 -6 0
10 -4 -7 | - 1 -3 0
—14 8 10 2 6 0
3 -1 =2
9 -1 -7 |.
~12 2 10

Thus, the updated form of the 3 X 3 matrix A(2:4,2:4)is

i

3 -1 -2
A(2:4,2:4) = 9 -1 -7 |. (2.40)
-12 2 10 .
Then,
3 -1 =2
L(2:4,2:4) U(2:4,2:4) = 9 -1 -7 |,
-12 2 10

which can be written as

( 1 0 o)( U2,2) U(23) U(2,4)> ( 3 -1 —2)
L(3,2) 1 0 0o U@®B3) UB4 |=| 9 -1 -7].
L{4,2) L(4,3) 1 0 0 U(4,4) ~12 2 10

The unknown entries from the second row of U and from the second column of L
can be computed from the 3 x 3 matrix above as follows:

U@2,2) =3 U@23)=-1 U@24=-2%

9 9 —12 —12
L(2.2) =1; = = — = J; 2) = = = —4.
(27 ) 1; L(37 2) U(2,2) 3 3 L(4a ) U(Z, 2) 3

Then, the current forms of L and U are
1 0 0 0 2 -1 3 0
-2 1 0 0 o 3 -1 -2

L= 7 3 1 o} U=l o o v@Es3 UB4 (2.41)
2 -4 L(4,3) 1 0 0 0 U(4,4)

The updated form of the 2 x 2 matrix A(3 : 4,3 : 4) is computed using (2.37), from
A(3: 4,3 : 4) obtained from (2.40) and with L and U given by (2.41), as follows:

A(3:4,3:4) '
= A(3:4,3:4) — L(3:4,2) U(2,3:4)

2w ) (S)e e

(
- (Fu)- ()
(
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" Thus, the updated form of the 2 x 2 matrix A(3:4,3:4)1is

A(B:4,3:4) = ( 2 ) : (2.42)
Then,

L(3:4,3) U(3,3:4) = (Ez "21>,

which can be written as
1 0 U(3,3) U(3,4) _ 2 -1
L{4,3) 1 0 U(4,4) - -2 2 :

The unknown entries from the third row of U and from the third column of I can
be computed from the 2 x 2 matrix above as follows:

U(3,3)=2; U(3,4)=—1;

-2 -2
L(3,3) =1; L(4,3) 0(,3) 5
Then, the current forms of I and U are
1 0 0 0 2 -1 3 0
| -2 1 0 0 }. 0 3 -1 -2
L=l 1 3 1 0" U=00o 0o 2 —1 (2.43)
2 -4 -1 1 0 0 0 U(4,4)

The updated form of A(4,4), which is a number, is computed using (2.37), from
A(4,4) obtained from (2.42) and with L and U given by (2.43), as follows:

A(4,4) = A(4,4)— LA,)UB,4) = 2~ (~1)-(=1) = 1

)

which corresponds to
L(4,4)=1; U(4,4)=1.

We conclude that the matrix A has an LU decomposition with the following L
and U factors:

1 0 0 0 2 -1 3 0
=21 0 o lo 3 1 -2

L=t 1 3 1 0] U=l0o o 2 -1 =
2 -4 -1 1 00 0 1

The pseudocode for the LU decomposition without pivoting, given as a function
call [L, U] = lu.no_pivoting(A), can be found in Table 2.5.

Lemma 2.3. The operation count for the LU decomposition without pwoting of an

n X 1 nonsingular matriz is
2
§n3 + 0. (2.44)

Proof. At step i, the “for” loop
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Table 2.5: Pseudocode for LU decomposition without pivoting

Function Call:
[L, U] = lumno.pivoting(4)

Input:
A = nonsingular matrix of size n with LU decomposition

Output:
L = lower triangular matrix with entries 1 on main diagonal

U = upper triangular matrix
such that A = LU

fori=1:{(n—1)
fork=1i:n
UG, k) = A(4, k); // compute row 4 of U
L{k,i) = A(k,1)/U(3,14); // compute column i of L
end
forj:('b—l—l) i

4(3,k) = 4(3, k) — L(3,9)U (4. k);
end
end
end
L(n,n) = 1, U(n,n) = A(n,n)

fork=1:n
Ui, k) = A(i,K)
L(k,i) = A(k,9)/U(,7%)
end

to compute the i~th row of U and the i~th column of I requires n — ¢+ 1 operations.
Also at step %, the double “for” loop

forj=0G+1):n
fork=0GE+1):n
end

end

to update A(i 4 1:m,i+ 1:n) requires
> 5 2= s
j=i+1 k=141

operations.
When accounting for the outside “for” loop “for ¢ = 1:(n—1)”, see Table 2.5, we
obtain that the operation count for the LU decomposition without pivoting is

nz_: (2(n—i)°+n—i+1). (2.45)
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Recall that
¥4 - P
_plp+1) 2 _ plp+1H2p+1) .
l;z = S and ;z = S (2.46)

see, e.g., section 10.3.1 from Stefanica [36].
Then, by letting I = n — 14 in (2.45) and using (2.46) for p = n — 1, we obtain that

n—1 n—1 n—1 n—1 n—1
@n-d?+n—i+l) = Y@ +i+1) =23 P+ Y 1+ Y 1
i=1 =1 1=1 =1 =1
_ 2(n—l)n(2n—1) N (n—1n fn—1
6 2
am® n?  Bn
= 3 " zte !

= %n?’ + O(n?);

see (10.79) in Section 10.2.3 for the last equality.

We conclude that the operation count for the LU decomposition without pivoting
2.3 2
is 3n° 4+ O(n7). : O

2.5 Linear solvers using the LU decomposition without
pivoting

Let A be a nonsingular square matrix of size n, and let b be a column vector of size
n. If the matrix A has an LU decomposition without pivoting A = LU, then, solving
a linear system Az = b is equivalent to solving

LUx = b.

This is the same as solving
Ly = b

for y, which can be done using forward substitution since the matrix L is lower
triangular, and then solving

Ur=y

for ¢, which can be done using backward substitution since the matrix U is upper
triangular.

The pseudocode for solving a linear system using the LU decomposition without
pivoting of a matrix can be found in Table 2.6. ‘

The operation count for the pseudocode from Table 2.6 is as follows:

e 2n° + O(n?) for the LU decomposition of A; cf. (2.44);
e n? + O(n) for the forward substitution for solving Ly = b; cf. (2.8);
o n? + O(n) for the backward substitution for solving Uz = y; cf. (2.19),
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Table 2.6: Linear solver using LU decomposition without pivoting

Function Call:
z = linear_solve LU no_pivoting(A,b)

Input:
A = nonsingular square matrix of size n with LU decomposition
b = column vector of size n

Output:
z = solution to Ax =b

[L, U} = lu-no_pivoting(A);
y = forward subst(L, b);
z

fi
backward.subst(U, y);

// LU decomposition of A
/] solve Ly =b
// solve Uz =y

for a total operation count of

(%ns + O(n2)> —i—v(n2 +0m) + (n*+0(n)) = §n3 + O(n®);

see (10.86) in Section 10.2.3 for a proof of the last equality.

2.5.1 LU linear solvers for tridiagonal matrices

Solving linear systems corresponding to tridiagonal matrices having LU decomposi-
tion is often needed for practical applications such as cubic spline interpolation and
the finite difference solution of the Black-Scholes PDE. We discuss the solution to
tridiagonal linear systems here, and furthermore in section 6.3 when investigating
efficient linear solvers for tridiagonal symmetric positive definite matrices.

We begin by showing that the L and U factors from the LU decomposition without
pivoting of a tridiagonal matrix are bidiagonal mastrices.®

Let A be an n x n tridiagonal matrix, i.e., such that

A(G k) = 0, V1< j,k<nwith|j—k >2, (2.47)

and assume that the matrix A has an LU decomposition without pivoting.” Let L
and U be the LU factors of A. We will show that L is a lower triangular bidiagonal
matrix, i.e., the only entries of L that can be nonzero are the main diagonal entries
L(4,%), for i = 1 : n, and the lower diagonal entries L(i,i — 1), for ¢ = 2: n, and that
U is an upper triangular bidiagonal matrix, i.e., the only entries of U that can be
nonzero are the main diagonal entries U(4,2), for i = 1 : n, and the upper diagonal
entries U(3,4 + 1), for i = 1: (n — 1).

Following step by step the LU decomposition without row pivoting from sec-
tion 2.4.1, we compute the entries from the first row of U as U(1,k) = A(L, k), for

SMore generally, the L and U factors from the LU decomposition without pivoting of a banded
matrix of band m are also banded of band m; see an exercise from the end of this chapter and
Stefanica [38] for details.

7A strictly diagonally dominated tridiagonal matrix is an example of a tridiagonal matrix with
LU decomposition without pivoting; see section 4.3.
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all k= 1:n, and the entries from the first column of L as L(k,1) = 3((’1”3, for all
k=1:n. Note that A(1,k) =0if3 <k <n and A(k,1) =0if 3 <k < n, since A
is a tridiagonal matrix; cf. (2.47). Then, U(L,k) =0if 3 <k <n and L(k,1) =0
if 3 < k < n, and therefore the only possible nonzero entries from the first row of
U and from the first column of L correspond to an upper triangular bidiagonal form
for U and a lower triangular bidiagonal form for L.

Moreover, since

L(2,1)
0
U(1,2:n)=(U(1,2) 0 ... 0) and L(2:m,1)= . ,
0
it follows that
L(2,1)
0
L2:n,1HYU(1,2:n) = . U2 0 ... 0
0
L(2,1)u(1,2) © 0
0 0 0
0 9 ... 0

Thus, updating the (n — 1) x (n — 1) lower right part of A as in (2.36), i.e.,
A2:n,2:n) = A@2:n,2:n) — L(2:n,1) U(1,2:n),
only involves changing the value of A(2,2) to
A(2,2) = A(2,2) — L(2,1)U(1,2),

which preserves the tridiagonal structure of the matrix A(2:n,2: n).

The tridiagonal structure of the updated part of A and the bidiagonal structure
of U and L will be further preserved as every row of U and every column of L are
computed.

For example, assuming that the updated form A(% : n,¢ : n) of the matrix A is
tridiagonal after ¢ — 1 rows of U and 4 — 1 columns of L are computed, the i—th row
of U is computed as U(i,k) = A(4,k), for all k= i:n, and the i-th column of L is
computed as L(k,i) = %g(’:—-g, for all k =4 : n. Since A(7 : n,i : n) is tridiagonal, it
follows that A(i, k) = 0if 1 + 2 < k < n, and therefore ‘

U(i,k) =0, Vi+2<k<n,
and also that A(k,7) = 01if s+ 2 < k < n, and therefore
L(k,3)=0, Vi+2<k<n

Thus, the only possible nonzero entries from the i—th row of U and from the ¢-th
column of L correspond to an upper triangular bidiagonal form for U and a lower
triangular bidiagonal form for L.
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Moreover, since

L(i+1,1)
' 0
UG,i+1:n)=U@Gi+1) 0 ... 0) and L(i+1:n,9)= ) ,
0
we find that
L(i+1,3)
0
LG+1:n,9U@Ei+1:n) = . UE,i+1) 0 ... 0)
0
LG+ 1,)U®,i+1) 0 0
0 0 0
0 0 ... 0

Then, updating the (n — 1) x (n — %) lower right part of A as in (2.37), ie.,
AGi+1:ni4+1:n) = A@G+1:ni+1:n) — L{i+1:n9) UGi+1 :n),
involves only changing the value of the A(¢+ 1,4+ 1) entry to
AG+1,54+1) = A@i+ 1,5+ 1) — L(i+1,)U(5,5+ 1),

which preserves the tridiagonal structure of the updated (n —4 —1) x (n —4 — 1)
matrix A(i+1:m,i+1:n).

The LU decomposition routine from Table 2.5 simplifies to the routine from Ta-
ble 2.7 for tridiagonal matrices with LU decomposition without pivoting.

The operation count for the tridiagonal LU decomposition without pivoting from
Table 2.7 is 3n — 3 operations: in each step of the “for” loop

fori=1:(n—1)
L(i,i) = 1; L+ 1,3) = AG + 1,4) /A, 4);
Ui, i) = A(3,9); U (4,4 + 1) = A(4, i+ 1);
Ali+1,i+1) = AG+1,i+1) = L(i + 1,)UG, 5 + 1);
end

we perform 3 operations, for a total number of operations of

3(n—1) = 3n—3. (2.48)

Thus, if A is a tridiagonal matrix with LU decomposition without pivoting, the
LU decomposition [L, U] = luno_pivoting(A) from the linear solver routine from Ta-
ble 2.6 can be replaced by the solver [L,U] = lumo_pivoting tridiag(A) from Ta-
ble 2.7.

Moreover, since the matrix L is lower triangular bidiagonal, the forward substi-
tution y = forward subst(L,b) from Table 2.6 can be replaced by the forward sub-
stitution y = forward subst_bidiag(L, b) for lower triangular bidiagonal matrices, see
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Table 2.7: LU decomposition without pivoting for tridiagonal matrices

Function Call:
(L, U] = lu_no_pivoting tridiag( A)

Input:
A = nonsingular tridiagonal matrix of size n with LU decomposition

Output:

L = lower triangular bidiagonal matrix with entries 1 on main diagonal
U = upper triangular bidiagonal matrix

such that A = LU

fori=1:(n-1)

L(i,4) = 1, L + 1,7) = A(i + 1,4) /A5, 1);

Ui, i) = A(,3); UGG, + 1) = A(d, 4+ 1);

A+ Li+ 1) = AG+ 1,0+ 1) — LE+1,9)U (4,1 + 1);
end

L(n,n) = 1; U{n,n) = A(n,n)

Table 2.2, and, since the matrix U is upper triangular bidiagonal, the backward
substitution z = backward_subst(U, y) from Table 2.6 can be replaced by the back-
ward substitution z = backward_subst_bidiag(U,y) for upper triangular bidiagonal
matrices, see Table 2.4.

"The resulting routine for solving linear systems corresponding to tridiagonal ma-
trices using LU decomposition without pivoting can be found in Table 2.8.

Table 2.8: Tridiagonal linear solver using LU decomposition without pivoting

Function Call:
z = linear.solve_LU no.pivoting tridiag(A,b)

Input:
A = nonsingular tridiagonal matrix of size n with LU decomposition
b = column vector of size n

Output:

z = solution to Az =

[L, U] = luno._pivoting_tridiag(A); // LU decomposition of A
y = forward_subst_bidiag(L, b); // solve Ly =b

x = backward_subst_bidiag(U, y); // solve Uz =y

Using the explicit implementations of lu_ no._pivoting_tridiag from Table 2.7, of
forward_subst_bidiag from Table 2.2, and of backward_subst._ bldlag from Table 2.4,
the explicit implementation of the tlldlagonal linear solver from Table 2.8 can be
found in Table 2.9.

Note that, in the pseudocode from Table 2.9, the following further simplifications
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Table 2.9: Explicit tridiagonal linear solver using LU decomposition without pivoting

Function Call:
« = linear_solve_LU_ no_pivoting-tridiag(A4,b)

Input:
A = nonsingular tridiagonal matrix of size n with LU decomposition
b = column vector of size n

Output:
2 = solution to Az =b

fori=1:(n—1)

L(i,i) = 13 L(i+ 1,6) = A(i + 1,)/A(G,);

Ulii) = A(4,0); UGG, i+ 1) = A(i,1 + 1);
AG+1,i+1) = AG+1,i+1) — L+ L,)UG i+ 1);

end
L(n,n) = 1; U(n,n) = A(n,n); // LU decomposition of A
y(1) =0b(1);
forj=2:n
y(5) = b6() — L, — 1)}’(j - 1)
end // forward substitution for Ly = b
o(r) = 71

forj=(n-1):1
) 32U G )
z(j) = y() ([zgjbl))m(a+l);

end ' // backward substitution for Uz = y

in the explicit implementation of y = forward_subst_bidiag(L, ), see Table 2.2, are

included:
e since L(1,1) =1, z(1) = fb(il%)— from Table 2.2 becomes x(1) = b(1);
o since L(5,7) = 1, x(j) = b—(l)"—%%l))—x(—]:}l from Table 2.2 becomes

2(j) = b(j) — L(, 5 — D= — 1)-

Thus, the operation count for the forward substitution “for” loop

forj=2:mn
2(j) = b(§) — L(5,d — D=7 — 1);
end

from Table 2.9 is
2(n—1) = 2n—-2.

The operation count for the pseudocode from Table 2.9 is as follows:

e 3n — 3 for the LU decomposition of A; cf. (2.48);
e 21 — 2 for the forward substitution for Ly = b; cf. (2.49);
e 3n — 2 for the backward substitution for Uz = y; cf. (2.20),

for a total operation count of

(Bn—3)+(2n -2 +(Bn—-2) = 8n—7 = 8n+O(L);

(2.49)
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 see (10.76) in Section 10.2.3 for a proof of the last equality.

2.6 LU decomposition with row pivoting

The LU decomposition without pivoting of a matrix has a major drawback: it does
not exist for all nonsingular matrices. In fact, it does not exist even for very well

conditioned matrices. For example, the matrix A = (1) i does not have an LU

decomposition without row pivoting. If it did, then A = LU could be written as

1 0 ULy U2\ [0 1
( £(2,1) 1 ) < o u@2 )= \11) (2:50)
By multiplying the matrix U by the first row of L, we find that U(1,1) = 0 and
U(1,2) = 1. Thus, (2.50) becomes

(L(21,1) ?)(8 U(21,2)> N (? 1)

However, multiplying the second row of L by the first column of U we obtain that
L(2,1)-0+1.0 = 1,

which is not possible. The reason for this is that A(1,1) = 0, and, since A(1,1) is
the first leading principal minor of A, the matrix A does not satisfy the requirement
for the existence of the LU decomposition without pivoting from Theorem 2.1, i.e.,
that all the leading principal minors are nonzero. :
However, any nonsingular matrix has an LU decomposition with row pivoting.
To introduce the concept of pivoting, recall from section 10.1.2 that a permutation
matrix is a matrix obtained by permuting the rows of the identity matrix, and that
matrix multiplication by a permutation matrix to the left results in a corresponding
permutation of the rows of the matrix. For example, the permutation matrix

¢
0 €3

P = has row form P = i

oo~ O
— O OO
OO O e
OO
S

and is also denoted, using column notation, as

3

1

P=1y

2

If A is a 4 x 4 matrix with row form

T r3
A= | ™|, then PA = | ™
T3 T4

T4 T2
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Definition 2.3. The LU decomposition with row pivoting of a nonsingular square
matriz A consists of finding a permutation matriz P, o lower triangular matriz L
with all entries on the main diagonal equal to 1, and a nonsingular upper triangular
matriz U such that

PA = LU.

Theorem 2.3. Any nonsingular matriz has an LU decomposition with row pivoting.

A proof of this result can be found, e.g., in Datta [12].

For a given permutation matrix P, the L and U factors from PA = LU are unique.
However, for any nonsingular matrix A, there may be many different permutation
matrices P such that the matrix PA has an LU decomposition. The algorithm
described below, and whose pseudocode is included in Table 2.10, uniquely identifies
the permutation matrix P and the L and U factors for the LU decomposition with
row pivoting of a given nonsingular matrix A. Note that all the entries of the matrix
L identified using this algorithm are less than or equal in absolute value to 1.

Let A be a nonsingular matrix. We identify a permutation matrix P and a lower
triangular matrix L (with main diagonal entries equal to 1) and an upper triangular
matrix U as detailed below.

e Identify the largest entry (in absolute value) in the first columm vector A(1 : n, 1)
of A. Switch the corresponding row and the first row of A, and do the same for the
permutation matrix P, which was initialized to be equal to the identity matrix:

P=1:n

find i_maz, the location of the largest entry from A(1:m,1)
w = A(1,1:n); A(L,1:n) = A(i-maz,1:n); A(i-maz,1:n) = vv;
cc = P(1); P(1) = P(i-maz); P(i-maz) = cc;

clear vv cc

o Compute the first row of U and the first column of L:

fork=1:n
U(l,k) = A(L,k)
L(k,1) = 553
end

e Update the (n — 1) x (n — 1) lower right part of A as follows:

A(2:n,2:n) = A(2:n,2:n) — L(2:n,1) U(1,2:n), (2.51)
which can be written entry by entry as follows:
forj=2:n
fork=2:n '
end
end

The row permutation process as well as the computation of every row of U and
column of I are done recursively from the latest updated part of the matrix A; see
also the 5 X 5 example below. For example, to compute the i-th row of U and the
i~th column of L, we do the following:
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. Identify the largest entry (in absolute value) in the first column vector A(i : n , %)
of A(é:n,i:n). Switch the corresponding row and the first row of A(¢ : n,i : n).
Switch the corresponding row and the row i of the permutation matrix P. Also,
switch all the entries already computed from the corresponding row and the row i of
the matrix L:

find <-maz, the location of the Targest entry from A(7 : n,1)
v = A(4,4: n); A(3,4 1 n) = A(icmaz, i n); A(iomaz,i: n) = v
cc= P(i); P(2) = P(i-maz); P(imazx) = cc;
ww = L{,1: (- 1)) ‘
L(i,1: (1 - 1)) = L(iomaz, 1 : (i — 1)); L{E-maz, 1: (i — 1)) = wiw;
clear vv ww cc

¢ Compute the i—th row of U and the i~th column of L:

fork=1i:n

Ui, k) = A(i, k)
. Ak
L(k,3) = U (i,1)

end

e Update the (n — ) x (n — %) lower right part of A as follows:

Af+1:n,i4+1:n) = Al +1:n,i4+1:n)
— L(i+1:n,3) U@,i+1:n), (2.52)
which can be written entry by entry as follows: .
forj=0G+1):n
fork=(i+1):n
A(j, k) = A, k) — L(5,9)U (4, k)
end
end

Further clarification on the recursive part of the LU decomposition with row piv-
oting can be found in the example below for a 5 X 5 matrix.

Erample: Let
1 2 -7 —-15 2
4 4 0 -6 -2
A = -2 -1 2 6 2.5
0 -2 2 —4 1
2 1 183 -5 35
Let L and U be the LU factors from the LU decomposition with row pivoting of
A corresponding to a permutation matrix P which will be identified below, i.e., such
that PA = LU. :
The permutation matrix P is set equal to the identity matrix and will be updated
as rows are switched. We will use the following notation for the row form of the
permutation matrix P:

R,
I
G O O
I
@
e
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We begin by identifying the largest entry, in absolute value, from the first column
1
4 b
-2 of A. That entry is 4, corresponding to the second row of A. We switch
0
2
the first row and the second row of A. The new form of the matrix A is

4 4 0 -6 -2
1 2 =7 -15 2

A=} -2 -1 2 6 25|, (2.53)
0 -2 2 -4 1
2 1 13 -5 35

We record the switch by permuting the first row and the second row of P as
follows:

1 2 es
2 -1 el
P=| 3 becomes P=1] 3 | =] € |. (2.54)
4 4 e
5 5 e

After the row permutations are done, the first row of U and the first column of L
are computed as in the algorithm for LU decomposition without row pivoting.

The entries of first row of U are given by (2.22), i.e.,, U(1,k) = A(l,k) fork = 1.5,
where the matrix A is given by (2.53):

ULl =4; U2 =4 U1L3) =0 U®4)=-6 US> =-2

The entries of first column of L are given by (2.24), i.e., L(k, 1) = 3((’;3 fork=1:5,
where the matrix A is given by (2.53):
1 1 -2 -2
L) =1 L2,1) = =2 = 0.25 = _="2- 05
0 2 2
W)= gag =% LGU= gy =7-05
The current forms of L and U are
1 4 4 0 —6 -2
0.25 0 U2,2 U23) UE24) U®2,5)
L=\ -05 |; U= 0 0 U(3,3) U(3,4) U(B,5) |. (2.55)
0 0 0 0 U(4,4) U(4,5)
0.5 0 0 0. U,4) U(5,5)

Note that, for the current form of the matrix L, we only consider the entries of L
computed so far, since the rows of L will switch as the corresponding rows of A
switch.

The updated form of the 4 x 4 matrix A(2 : 5,2 : 5) is computed using (2.51), from
A(2:5,2: 5) obtained from (2.53) and with L and U given by (2.55), as follows:

A(2:5,2:5)
= A(2:5,2:5) — L(2:5,1) U(1,2:5)
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2 -7 —15 2 0.25
1 2 6 25 0.5
= |l -2 2 -4 1 |~ o |0 -6 -2
Y 1 13 -5 35 0.5
2 7 15 2 1 0 -15 —05
1 o2 6 25 2 0 3 1
=l 2 2 4 1|l o o o o
1 13 -5 35 2 0 -3 -1

1 —7 0 25

1 2 3 15 :

- PSR (2.56)
~1 13 -2 45

To compute the second row of U and the second row of L, we identify the largest
1

entry, in absolute value, from the first column 52 of the matrix A(2:5,2:5)
-1

from (2.56). That entry is —2, corresponding to the third row of A(2:5,2: 5). We

switch the first row and the third row of A(2:5,2:5) from (2.56), and obtain that

2 2 -4 1

1 2 3 15 .

1 -7 0 25 |- (2.57)
Z1 13 -2 45

A(2:5,2:5) =

Note that the first row and the third row of A(2 : 5,2 : 5) correspond to the
second row and the fourth row of the matrix A. We record the switch by permuting
the second row and the fourth row of the matrix P given by (2.54) as follows:

2 2 €9
1 4 i
P=13 becomes P=1] 3 | =| & |. (2.58)
4 1 el
5 5 ek

Furthermore, the second row and the fourth row from the current form of L from
(2.55) are also switched. The matrix L has now the following current form:

1 1
0.25 , 0
L=1] -05 becomes EL=1] -05 |. (2.59)
0 0.25
0.5 0.5

After the row permutations are done, the second row of U and the second column
of L are computed as in the algorithm for LU decomposition without row pivoting.
Note that

2 2 4 1
L@:52:8)UQ2:52:5 = |, 5 o 15
1013 -2 45
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see (2.57), which can be written as

1 0 0 0 U@2,2) U@2,3) U@24) U(@25)
L(3,2) 1 0 0 0 U3,3) U((B,4) UB,S5)
L4,2) L(4,3) 1 0 0 0 U(4,4) U(4,5)
L(52) L(53) L(54) 1 0 0 0 U55)

-2 2 -4 1
1 2 3 15 y
- 1 =7 0 25
-1 13 -2 45

Thus, the unknown entries from the second row of U and from the second column ;
of I can now be computed from the 4 X 4 matrix above as follows:

U2,2=-2 U@23)=2% U@24)=-4 UEd=1L

1 1
L(2,2) =1, (3,2) 02,9) 0.5; | L{4,2) 0(2,2) 0.5;
-1
. L(5,2) = m = 0.5.
Then, the current forms of L and U are
1 0 4 4 0 -6 -2
0.25 1 0 -2 2 —4 1
L= —05 —05 |; U=] 0 0 U3 U(3,4) U(3,5) . (2.60)
0 —0.5 0 O 0, U(4,4) U(4,5)
0.5 0.5 0 O 0 0 U(5,5) /

The updated form of the 3 x 3 matrix A(3 : 5,3 : 5) is computed using (2.52), from
A(3:5,3:5) obtained from (2.57) and with L and U given by (2.60), as follows:
A(3:5,3:5)

A(3:5,3:5) — L(3:5,2) U(2,3:5

2 3 15 ~0.5
= -7 0 25 | — | —05
13 —2 45 0.5
2 3 15 -1 2 -05
- 7 0 25| - | -1 2 -05
13 —2 45 1 -2 05
3 1 2
-6 -2 3 |. - (2.61)
12 0 4

To compute the third row of U and the third column of L, we identify the largest
. 3
entry, in absolute value, from the first column | —6 of the matrix A(3:5,3:5)
12
from (2.61). That entry is 12, corresponding to the third row of A(3:5,3:5). We
switch the first row and the third row of A(3:5,3 :5) from (2.61), and obtain that

12 0 4
A(3:53:5) = | -6 —2 3 |. (2.62)
3 1 2

Il

)
(2 —4 1)

{l
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Note that the first row and the third row of A(3: 5,3 : 5) correspond to the third
row and the fifth row of the matrix A. We record the switch by permuting the third
row and the fifth row of the matrix P given by (2.58) as follows:

2 2 e5
4 4 el
P=13 becomes P=| 5 | =| & |. (2.63)
1 1 e%
5 3 b

Furthermore, the third row and the fifth row from the current form of L from
(2.60) are also switched. The matrix L has now the following current form:

1 0 1 0
0.25 1 0.25 1
L= -05 —-05 becomes L = 0.5 0.5 . (2.64)
0 —05 , 0 —-05
0.5 0.5 -0.5 -0.5

After the row permutations are done, the third row of U and the third column of
L are now computed as it was done in the algorithm for LU decomposition without
row pivoting. Note that

12 0 4
L(3:5,3:8)U(3:5,3:5) = -6 -2 3 |,

3 1 2
( 1 0 0)<U(3,3) U(3,4) U(S,S)) (12 0 4)
L(4,3) 1 0|} 0 U444 UH4s5 | = | -6 -2 3 |.
L(5,3) L(5,4) 1 0 0 U(s,5) 31 2

Thus, the unknown entries from the third row of U and from the third column of
L can now be computed from the 3 x 3 matrix above as follows:

see (2.62), which can be written as

U3,3) =12 U@3,4) =0, U(3,5) =4;

-6 -6 3 3
LE3) =1 LA3) = ga =15 =05 L6:3)=grs =15

Then, the current forms of L and U are

1 0 0 4 4 0 -6 -2
025 1 0 0 -2 2 -4 1

L=| -05 -05 1 |;Uu=|0 0 12 0 4 (2.65)
0 -05 —05 0 0 0 . U44) U#4,5)
05 05 025 00 0 0 U(55)

The updated form of the 2 x 2 matrix A(4 : 5,4 : 5) is computed using (2.52), from
A(4:5,4 : 5) obtained from (2.62) and with L and U given by (2.65), as follows:

A(4:5,4:5)
= A(4:5,4:5) — L(4:5,3) U(3,4:5)
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(23) - (o3 )e
) - (0 7))

Il

i
7~
|
I\
-t
~—

To compute the fourth row of U and the fourth column of L, note that the largest
entry, in absolute value, from the first column ( _12 > of the matrix A(4:5,4:5)

from (2.66) is —2, which is already on the first row of A(4:5,4:5).
Thus, no row pivoting is necessary, and the updated form of the 2 x 2 matrix
A(4:5,4:5) is
-2 5

A4:5,4:5) = ( ! 1). (2.66)

The fourth row of U and the fourth column of L are computed as it was done in
the algorithm for LU decomposition without row pivoting. Note that

L(4:5,4:5) U(4:5,4:5) = (‘12 ?)

see (2.66), which can be written as

1 0 U(4,4) U(4,5) _ -2 5
L(5,4) 1 0 U(5,5) - 1 1)
Thus, the unknown entries from the fourth row of U and from the fourth column of
I, can be computed from the 2 x 2 matrix above as follows:

U4,4)=-2 U@, 4) =35

1 1
L(5,4) = Tan -3 —0.5.

Then, the current forms of L and U are

1 0 0 0 4 4 0 -6 2
025 1 0 0 ' 0 -2 2 -4 1
L=| -05 -05 1 o |; u=|0 0o 12 0 4
0 -05 —05 1 0o 0 0 -2 5
05 05 025 -—0.5 0 0 0 0 U®55)

(2.67)

The updated form of A(5,5), which is a number, is computed using (2.52), from
A(5,5) obtained from (2.66) and with L and U given by (2.67), as follows:

A(5,5) = A(5,5) — L(5,4)U(4,5) = 1—(-0.5):5 = 3.5,

which corresponds to
L(5,5)=1; U(5,5)=35.




2.6. LU WITH ROW PIVOTING LINEAR SOLVERS 69

We conclude that the matrix A has an LU decomposition with row pivoting with
permutation matrix

2 €5 001000
4 e 000 10
P= |5 =] | =]100001],
1 et 10000
3 e 00100
see (2.63), and with the following L and U factors:
1 0 0 0 0 4 4 0 -6 -2
0.25 1 0 0 0 0 -2 2 -4 1
L= —-05 -0.5 1 0 01; U= 0 0 12 O 4 0
0 -0.5 —0.5 1 0 0 O 0 -2 5
0.5 05 025 —-05 1 0 0 0 0 35

"The pseudocode for the LU decomposition with row pivoting, given as a function
call [P, L,U] = lu_row.pivoting(A), can be found in Table 2.10.
The operation count for the LU decomposition with row pivoting is
2 3

gn + O(nz)v

the same as for the LU decomposition without pivoting.

2.7 Linear solvers using the LU decomposition with row
pivoting

The LU decomposition with row pivoting of a matrix can be used to solve linear
systems efficiently as follows: Let A be a nonsingular square matrix of size n, and
let b be a column vector of size n. If PA = LU is the LU decomposition with row
pivoting of A, then, solving a linear system Az = b is equivalent to solving

PAz = Pb,

since the permutation matrix P is nonsingular. Since PA = LU, this is equivalent
to .

LUz = Pb.
This is the same as solving
Ly = Pb

for y, which can be done using forward substitution since the matrix I is lower
triangular, and then solving

Ur=y
for z, which can be done using backward substitution since the matrix U is upper
triangular.



70 ' CHAPTER 2. LU DECOMPOSITION

Table 2.10: Pseudocode for LU decomposition with row pivoting

Function Call:
[P, L,U] = lurow_pivoting(A)

Input:
A = nonsingular matrix of size n

Output:

P = permutation matrix, stored as vector of its diagonal entries
= lower triangular matrix with entries 1 on main diagonal

U = upper triangular matrix

such that PA = LU

P=1:n;L=1; // initialize P and L as identity matrices
fori=1:(n—-1)
find i.mazx, index of largest entry in absolute value from vector A(i: n,1)
v = A(4,1:n); A(4,4: n) = A(i-maz, i : n); A(iomaz, i : n) = v,
// switch rows i and i.max of A
cc = P(i); P(i) = P(i-max); P(i-maz) = cc; // update matrix P

ww = L(i,1: (1 — 1));
L{i,1: (i — 1)) = L(i-mazx, 1 : (¢ — 1)); L(i-maz,1: (¢ — 1)) = ww;

end // switch rows ¢ and i_mazx of L
forj=i:n
L(j,2) = A(J,%)/A(4,7); // compute column ¢ of L
Ui, 5) = A, 7); // compute row i of U
end

A, k) — LG, )U i, k);

A(4, k)
end
end
clear vv ww cc
end

L(n,n) = 1; U(n,n) = A(n,n);

The pseudocoede for solving a linear system using the LU decomposition with row
pivoting of a matrix can be found in Table 2.11.
The operation count for the linear solver from Table 2.11 is

22

3
the same as for the linear solver using the LU decomposition without pivoting of a
maftrix; see section 2.5.

+ O(n?),

2.7.1 Solving linear systems corresponding to the same matrix

In this section, we show how the LU decomposition with row pivoting of a matrix
can be used to solve multiple linear systems corresponding to the same nonsingular
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Table 2.11: Linear solver using LU decomposition with row pivoting

Function Call:
z = linear solve_lu_row_pivoting(A,b)

Input:
A = nonsingular square matrix of size n with LU decomposition
b = column vector of size n

Output:

z = solution to Az =b

[P, L,U] = lu.row_pivoting(A); // LU decomposition of A
y = forward_subst(L, Pb); // solve Ly = Pb

z = backward_subst(U, y); // solve Uz =y

matrix efficiently, which is often needed in practice, e.g., for the finite difference
solution of the Black—Scholes PDE.

Assume that we want to solve p linear systems corresponding to an n X n non-
singular matrix A.’ In other words, we want to find n x 1 vectors z;, 4 = 1 : p, such
that

Az = by, Vi=1%vp, (2.68)

where b; is a column vector of size n, for i =1 : p.

Note that the matrix A has an LU decomposition with row pivoting, since it is
nonsingular; see Theorem 2.3. One way to solve the linear systems from (2.68) would
be to use the routine linear_solve_lu_row_pivoting from Table 2.11 to solve each one
of the p linear systems inside a “for” loop as follows:

fori=1:p
x; = linear_solve lu_row.pivoting(A4,b;)
end

. 'This would require
2 3 2 2 3 2
p{3n +0(n%) | = 3P + pO(n”) (2.69)

operations, since each linear solver requires %ns + O(n?) operations; cf. Lemma 2.3.

However, the most expensive part of z; = linear_solve lu.row_pivoting(A,b;) is
computing the LU decomposition with row pivoting of the matrix A, which dom-
inates the cost of the subsequent forward substitution and backward substitution.
Thus, an efficient way of solving the linear systems (2.68) is to compute the per-
mutation matrix P and the L and U factors of A only once, outside the “for”
loop, and then do the forward and backward substitutions corresponding to z; =
linear_solve_lu_row_pivoting(A,b;) inside the “for” loop; see the pseudocode from Ta-
ble 2.12 for details.

Recall that the forward substitution forward_subst(L, b;) and the backward substi-
tution backward_subst(U, y) require n? 4 O(n) operations each; cf. (2.8) and (2.19).
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Table 2.12: Solution of multiple linear systems corresponding to the same matrix

Input:
A = nonsingular square matrix of size n with LU decomposition
b; = column vectors of size n, i =1:p

Output:
x; = solution to Ax; =b;,i=1:p

[P, L, U] = lurow_pivoting(A);
fori=1:p
y = forward_subst(L, Pb;);
x; = backward_subst(U, y);
end

Thus, the operation count for solving the p linear systems using the method from
Table 2.12 is

2 2

gng +0(n? + p (n2 +0(n) + n*+0Mn) = gne’ +2pm% + O(n*) + pO(n),
which is smaller than %pn3 + pO(n?), the operation count required by solving the p
linear systems sequentially; see (2.69).

As an example of solving multiple systems corresponding to the same matrix, we
show how to efficiently compute the inverse of a nonsingular matrix.

Finding the inverse of a nonsingular matrix one entry at a time requires computing
the determinant of the matrix and one minor for every entry of the matrix, for a total
cost of more than n? - n! operations. This is beyond regular computer power limits
even for small values of n, since, from Stirling’s formula, n! is of the order "n:nl 2 ; for
example, computing the inverse of a nonsingular 27 x 27 matrix using this method
would require more than 10?8 operations.

Nonetheless, the inverse of an n X n nonsingular matrix having an LU decompo-
sition can be computed very efficiently in %na + O(n?) operations as follows:

Let A be an n x n nonsingular matrix, and let A™" = col (¢k),—y.,, be the column
form of the inverse matrix of A. Then, AA™" = I, where I = col(ek);-,., is the
identity matrix of size n. Using (1.11), we find that AA™Y = col(Ack);_,,,, and
therefore AA™! = I is equivalent to '

Acy, = ex, Yhk=1:n,

which can be solved using the method from Table 2.12 as follows:

[P, L, U] = lu_row_pivoting(A)
fork=1:n
y = forward_subst(L, Pey)
cr = backward_subst(U, y)
end ’
A_l = COl (ck)kzltn
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The operation count for computing the inverse matrix using this method is

8 3

21;;3 +0(®*) + n (n2 + O(n) + n?+ O(n)) =37 + O(n*); (2.70)

3
see (10.88) in Section 10.2.3 for a proof of the last equality.

2.7.2 Finding discount factors using the LU decomposition

If the number of cash flow dates is equal to the number of bonds (and if there are
no redundancies), then the discount factors corresponding to the cash flow dates can
be uniquely determined from the bond prices by solving a linear system using LU
decomposition with row pivoting; see also.section 2.2.1 for an example when forward
substitution is used to determine the discount factors.

For the example below, recall that a semiannual coupon bond with face value
$100, coupon rate C, and maturity T pays the holder of the bond a coupon payment
equal to % <100 every six months, except at maturity. The final payment at maturity
is equal to the face value of the bond plus oné coupon payment, i.e., 100+ %100. For
example, a semiannual coupon bond with 15 months to maturity and coupon rate
5%, i.e., C' = 0.05, has three cash flow dates, in 3, 9, and 15 months, corresponding
tot1 =35 =13 ta=3 =2 andts =3 = 2, respectively. The corresponding cash
flows are c1 = 2.5, c2 = 2.5, and c¢3 = 102.5. ’

Ezample: The values of the following coupon bonds with face value $100 are given:

Bond Type Coupon Rate Bond Price
11 months semiannual 4% $101.5

17 months annual 5% $103.5

23 months semiannual 3% $101°

23 months annual 6% $106.75

The cash flows and the cash flow dates of the bonds are recorded in the table below:

Bond Type Cash Flow & Date
11 months semiannual $2 in 5 months
: $102 in 11 months

17 months annual $5 in 5 months
$105 in 17 months

23 months semiannual $1.5 in 5 months

$1.5 in 11 months
$1.5 in 17 months
$101.5 in 23 months
23 months annual $6 in 11 months
$106 in 23 months

Note that the four bonds have exactly four cash flow dates, i.e., 5 months, 11
months, 17 months, and 23 months, and let d1, d2, d3, and d4 be the discount factors
corresponding to these dates. Using the formula (2.11) for bond valuation, we find
that

101.5 = 2di + 102dy;
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105.5 = b5di + 105ds;
101 = 1.5dy + 1.5d2 + 1.5d3 + 101.5d4;
106.75 = 6dz + 106ds.

This linear system can be written in matrix notation as Az = b, where

2 102 O 0 di 101.5

A 5 0 105 0 g d |, = 105.5
=115 15 1.5 1015 |’ =V ds | - 101

0 6 0 106 ds 106.75

The solution of Az = b is obtained using the LU decomposition with row pivoting ‘
linear solver® from Table 2.11, i.e., !

0.9916
T = linear_solve_lu_row_pivoting(A,b) = 83;%
0.9518

Recall that the discount factors corresponding to the cash flow dates are equal to
the entries of z. Thus,

. 5 . 11
dy = Disc <E> =0.9916; d2 = Disc (E) = (0.9757,

17 23
= Disc | == | = 0.9575; =Disc| =} =0. )
ds = Disc (12) 0.9575; da isc <12) 0.9518
Then, formula (2.12), ie.,
Disc(t;) = exp (—tir(0,:))

can be used to find the corresponding continuously compounded zero rates, as follows:

_ 5 5 5\ In{di) _ ]
di = exp < " (0, 12)) = T (0, 12) =% 0.0202 = 2.02%;

11 11 11\ In(d2) B
do = exp (—I'Q—T (0, -1—2'>) & T (0, E) = _Ti/_li— = 0.0269 = 269%,

8We provide more numerical details here. The permutation matrix P, lower triangular matrix
L, and upper triangular matrix U from the LU deqnmposition with row pivoting of A are

0 1 0 0 1 0 0 0
P_(lOOO),L#(OA 1 0 o),
=]lo 0 1 0| = | 03 0.0147 1 0o |’

0 0 0 1 0 00588 —0.0841 1

5 0 105 0
u = | 0 102 —~42 0
= 0 0 —29.3824 1015 :
0

0 0 114.5345

Furthermore,

105.5
59.3
y = forwardsubst(L, Pb) = 68.4779 :

109.0197
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ds = exp < 7 (0 E)) = T (0 17) In(ds) _ 0.0306 = 3.06%;

12\ '12) T T T7/12
23 23 ' 23\  In(da) :
dy exp( 5" <0, 12)) paus T(O, 12) 93712 0.0257 57%

2.8 Cubic spline interpolation

Interpolating a continuous function from known values at a finite number of discrete
nodes is a frequently used tool for financial applications, e.g., for inferring a zero—rate
curve from known discount factors.

The continuous interpolation problem can be described in general terms as follows:

Find a continuous function f : [zo,s] — R such that f(z:) = v;, for all i = 0 : n,
where o < 1 < ... < Tn, and v; are the known values of f(z) at the point z;, for
alli=0:n.

The simplest way to obtain such a function is by linear interpolation between
every two points z;—1 and z;, for ¢ = 1 : n, resulting in the following function:
(x - $i~1)vi (@: — w)vz‘—l

f(x) = -+ , Ve <z <z, Vi=1:n.
Tg — i1 Ti — XTi-1

However, linear interpolation has a major drawback: the resulting function f(z) is
not differentiable at any point z;, 1 =1:(n —1).

The interpolation method most often used in practice is cubic spline interpolation,
which requires the function f(z) to be a polynomial of degree three (i.e., a cubic poly-
nomial) on each interval [z;—1,z;], for i = 1 : n, as well as to be twice differentiable
on the entire interval [zo, Zx].

In other words, we are looking for a function f(z) of the form

fz) = file) = ai+bx+ca® +dix®, Va1 <z<z, VYi=1l:n, (2.71)

such that
filmiz1) = wvi, Vi=1:mn (2.72)
film:) = v, Vi=1:m (2.73)
filws) = fig(ms), Vi=1:(n—-1); (2.74)
fi(@) = fili(m), Vi=1:(n~1). (2.75)

Using (2.71), we can rewrite (2.72-2.75), respectively, as follows:

@i +bizi1 +ciwiy Fdiwty = vii1,  Vi=1:m (2.76)

a; + biws + ¢y 4 dixy = i, Vi=1:n; 2.77)

bi + 2cix; + 3dix? = bipr + 26412 + 3diazs,  Vi=1:(n-1); (2.78)
2¢c; + 6d;z; = 2c¢i41 + 6dip17s, Yi=1:(n-1). (2.79)
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The unknowns are the coefficients as, bi, ¢i, di, ¢ = 1 : n. Thus, there are 4n un-
knowns. There are n constraints corresponding to (2.76), n constraints corresponding
to (2.77), n—1 constraints corresponding to (2.78), and n—1 constraints correspond-
ing to (2.79), for a total of 4n — 2 constraints. Two more constraints are therefore
needed for a unique solution. The most common choice for these two constraints is
to require that fy (zo) = 0 and fy, (z,) =0, i.e.,

21 +6dize = 0; (2.80)
2¢n + 6dnzn, = 0. (2.81)

The résulting method is called the natural cubic spline interpolation.
Let T be the 4n x 1 vector of the unknowns as, b;, ¢, di, ¢ = 1 : n, given by

T4t —3)=ai; T4 —2) =bs; T(di— 1) =¢;; T(di) =ds; Vi=1:n.

Note that (2.76-2.81) is a linear system with 4n equations and 4n unknowns which ‘

can be expressed in matrix notation as

Mz = b, (2.82)

where b is an 4n x 1 vector given by

b(1) = 0; b(4n) = 0; (2.83)
B4 —2) =vi-1; b4i—1)=v; Vi=1:n; (2.84)
b(41) =0; b(4i+1)=0, Vi=1:(n-1), (2.85)

and M is the 4n x 4n matrix given by
M(1,3) = 2; M(1,4) = 6z0; (2.86)
M(4n,4n — 1) = 2; M(4n,dn) = 6z,; (2.87)
M(4i—2,4i —3)=1; M(4i—2,4i—~2)=xz;-1, Vi=1:m (2.88)
M4 —2,4i — 1) =al {; M4i—2,4) =2 ,, Vi=1:n; (2.89)
M(4i—1,4i—3)=1; M4i—1,4i~2)=x;, Vi=1:n; (2.90)
M4i—1,4i—1) =a2; M4i—1,4) =a3, Vi=1:n; (2.91)
M(4,4i—2) =1, M(4,4—1) =2z;, Vi=1:(n-1); (2.92)
M(4i,4) =327, M(43,44+2) = —1, Vi=1:(n~1) (2.93)
M(4i, 4 +3) = —2z;; M4i,4i+4) =322, Vi=1:(n—1); . (2.94)
M4+ 1,40 — 1) = 2, M(4i +1,46) = 6x;, Vi=1:(n—1); (2.95)

M(4i+1,4i +3) = ~2; M(4i+1,4i+4) = —6z;, Vi=1:(n—1). (2.96)
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The matrix M is a banded matrix of band 4. Moreover, the matrix 37 is nonsin-
gular for any values of the nodes z;, i =0:n.°

The linear system MZ = b from (2.82) can be solved using the LU with row
pivoting solver from Table 2.11, i.e., & = linear_solve_lu_row_pivoting(_]\Z,E).

The cubic spline interpolation pseudocode can be found in Table 2.13.

Table 2.13: Pseudocode for the natural cubic spline interpolation

Input:
%; = interpolation nodes, 1 =0:n
v; = interpolation values, : = 0: n

Output: .
a4, by, ci, di = cubic polynomials coefficients, i =1 :

compute vector b from (2.83-2.85)
compute matrix M from (2.86-2.96)
T = linear solve_lu_row_pivoting (M ,b)
fori=1:n
ai =Z(4i - 3); by =T(di—2); ¢; = T(di - 1); d; = T(44);
end '

2.8.1 Cubic spline interpolation for zero rate curves

Cubic spline interpolation is often used to obtain a continuous zero rate curve from
values of the zero rate for discrete times which price correctly a set of interest rate
instruments such as bonds and swaps. The zero rate curve thus obtained can then
be used to price interest rate instruments with any cash flow dates.

For example, assume that the following zero rates have been determined:

Time Zero Rate
overnight 0.50%
2 months 0.65%
6 months |- 0.85%
12 months 1.05%
20 months 1.20%

In other words, (0,0) = 0.0050; r (0, 2) = 0.0065; r (0, 55) = 0.0085; 7(0,1) =
0.0105; and 7 (0, %) = 0.0120, where 7(0, t) is the zero rate corresponding to time ¢.
We use cubic spline interpolation to find the zero rate curve (0, t) for all matu-

rities up to 20 months, i.e., forall 0 < ¢ < %. Thus, 7(0,t) is assumed to be a cubic

°While it is difficult to see that M is nonsingular by inspecting its entries, note that the
Ldution_ to the cubic spline interpolation which is given by the solution to the linear system
MZ = b is equivalent to finding a solution to the tridiagonal system Mz = b from (6.82). As
shown in section 6.4, the matrix M is symmetric positive definite, and therefore nonsingular, for
any values of the nodes z;, i = 0 : n. We conclude that the cubic spline interpolation has a unique
solution for any nodes Zi, ¢ = 0 : n. Thus, the linear system MZ = b must have a unique solution,
and we can therefore conclude that the matrix M is nonsingular.
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polynomial on each of the intervals [0,%], [& 5] [ ], and [1, 20]. The coef-

ficients of these cubic polynomials are obtained by solving the linear system (2.82)
corresponding to the 16 x 16 banded matrix M given by (2.97-2.98):

0 0 2 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1/6 1/36 0.0046 0 0 0 0
o 1 1/3 112 0 -1 -1/3 -1/12
0 0 2 1 ) —1
0 0 0 0 1 1/6 1/36 0.0046
0 0 0 0 1 05 1/4 1/8
— 0 0 0 0 0o 1 1 3/4
M=1¢9 o o0 o 0 0 2 é (2.97)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0o 0 0 0 0 O 0 0
0o 0 O 0 0 O 0 0
o 0 O 0 0 O 0 0
o 0 O 0 0 0 0 0
o 0 O 0 0 0 0 0
0o 0 O 0 0 O 0 0
0 0 0 0 0 0 0 0
0 -1 -1 -3/4 0 0 0 0
0 0 -2 —é 0 0 0 0 (2.98)
1 1/2 1/4 1/8 0 O 0 0
11 1 1 0 0 0 0
o 1 2 3 0 -1 -2 -3
0o 0 2 6 0 0 -2 -6
o 0 O 0o 1 1 1 1
0o 0 O 0 1 5/3 25/9 4.6296
o 0 O 0 0 0 2 10
The resulting zero rate curve is
0.005 + 0.0095¢ — 0.0171¢2, if 0<t< 3
0.0049 -+ 0.0115¢ — 0.0122¢% +0.0073¢%, if & <t < 55
0.0 = 0080 00057 — 00006 — 000058, if Lee<t )
0.0044 4+ 0.0t — 0.0049¢2 +0.001¢3,  if 1<t <%

1

[~

The zero rate curve 7(0,t) can be used, e.g., to find the value of a 13 months 3%
quarterly bond with face value $100. This bond has the following cash flows:

Theé value of the bond, denoted by B, is obtained by adding the present value of
all the future cash flows of the bond. Assuming that the zero rate r(0,1) corresponds
to continuous compounding, we obtain that

1 1 4 4
B = 0.75exp <_§T (0, E)) + 0.75 exp (—1—2-7‘ (0, —ﬁ))
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Date Cash flow

1 month $0.75
4 months $0.75
7 months $0.75
10 months $0.75

13 months $100.75

7 7 10 10
+ 0.75 exp <~——1—2-7" <O, —1—5)) + 0.75 exp <——1—2-7" (0, E))
13 13
+ 100.75 exp (—Er (0, E)) .

From (2.99), we find that r (0, 13) = 0.005782; r (0, &%) = 0.007648; r (0, %) =

» 12 » 12

0.008922; r (0, {3) = 0.009944; and (0, 12) = 0.010754.

Thus, B = 102.5707, i.e., the value of the bond is $102.57.

2.9 References

Detailed proofs for the existence of the LU decomposition can be found in Golub
and Van Loan [18]. Trefethen and Bau [43] give an implicit constructive proof for
the existence of the LU decomposition with row pivoting of a nonsingular matrix,
presenting the intuition behind switching the rows of the lower triangular factor
L in the LU with row pivoting algorithm. A discussion of the stability of the LU
decomposition, both from a theoretical and from a practical standpoint, can be found
in Higham [20].

The numerical solution of the Black-Scholes PDE using finite differences requires
solving linear systems corresponding to the same tridiagonal matrix. For a classical
treatment of the finite difference solution of the Black-Scholes PDE, see Wilmott [46]
further implementation details can be found in Hirsa [21].

)
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2.10 Exercises

1. Let
1 0 0 0 2 -1 o0 1
1 2 0 0 [0 —12 12 0
Li=| o 9 3 ol U=l0o o 13 -1/3
2 2 -3 4 o 0 0 -1/4
1 0 0 0 2 -1 0 1
=11 0 o {0 11 0
La=| o 5 1 o V=10 0o 1 -1
2 1 -1 1 0 0 0 -1

(i) Show that LiU1 = LaUs.

(ii) Explain why this does not contradict the uniqueness of the LU decomposi-
tion of a matrix.

(iii) Show that

100 0 1 0 o0 0
2 0 0 1/2 0
In=L, 8 0 g o | and U= 8 é 193 o | U=
00 0 4 0 0 0 1/4 1

2. Let L1 and Lo be nonsingular lower triangular matrices and let Uy and Uz be
nonsingular upper triangular matrices. If LiUs = L2Us, show that there exists
a nonsingular diagonal matrix D such that

L1 = LzD and U1 - D—1U2.

3. Let
- 2 —1 0 1
2 0 1 -1
A=l 4 1 0 1
4 -3 0 2

(i) Show that the LU decomposition with row pivoting of the matrix A is given
by PA = LU, where

00 1 0
000 1|
P=1910 0|
100 0,
1 0 00
B 1 1 00\
L = 05 025 1 0 |
05 025 0 1
4 -1 0 1
0 -2 0 1
U =10 0 1 -0

0 0 0 025
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3
(ii) Solve Az = b, where b= _01
2

(iii) Find A™*, the inverse matrix of A.

2 1 3 1 -1
1 0 -2 —4 | o

4, Let A= 3 1 1 -9 and b= 1 )
—~4 1 0 2 2

(i) Find the LU decomposition with row pivoting of the matrix A;

(ii) Use the linear solver linear_solve_lu_row_pivoting to solve the linear system

Ax=b.
1 0 0 0 01 0 0
(iii) Let Py = 8 (1) 8 (1) and Py = (1) 8 8 (1) be permutation
001 0 0 01 0
matrices, and let
0 0 0
1 0 0.
—0. 6667 —0.5833 1 (U
0.3333 —0.5833 0.1429 1

3 2 ~1
0 - 1 -
0 —3 5 —0.0833
0 1.9286
Show that .
Pl A P2 = L1 Ul.

(iv) Use forward substitution to solve L1y = Pib, and use backward substitution
to solve Urz1 = y. Let 22 = Poz;. Show that x5 is the same as the solution x
to Ax = b obtained at (ii), and explain why this happens.

Note: The LU decomposition with full pwotlng of A is of the form P1AP, =
L,U.

5. Find the LU decomposition without pivoting of the matrix

1 0 0 0
-1 1 0 0
-1 -1 1 0
-1 -1 -1 1
-1 -1 -1 -1

ottt

Note: This is the 5 x 5 version of the classic example of a matrix whose LU
decomposition is unstable.
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6.

10.

11.

CHAPTER 2. LU DECOMPOSITION

Let
2 -1 1
A = -2 1 3
4 0 -1

(i) Show that the 2 x 2 leading principal minor of A is 0, i.e., show that
2 -1
det ( 9 ) = 0.

(ii) Attempt to do the LU decomposition without pivoting of the matrix A4, and
show that the division by U(2, 2) cannot be performed when trying to compute
the second row of L.

(iii) Show that the matrix A is nonsingular, and compute the LU decomposition
with row pivoting of A.

. The LU decomposition with column pivoting of an n X n nonsingular matrix

Ais AP = LU, where P is an n X n permutation matrix, L is an n X n lower
triangular matrix with all entries on the main diagonal equal to 1, and U is an
n X n upper triangular matrix. Write a pseudocode for solving linear systems
of the form Az = b by using the LU decomposition with column pivoting of A.

. Write the pseudocode for the forward substitution corresponding to a lower

triangular banded matrix of band m, i.e., for solving Lz = b where bis an n x 1
vector and L is an n X n lower triangular matrix such that

L{j,k) = 0, Vi<jk<n with j—k>m.

What is the corresponding operation count?

. Write the pseudocode for the backward substitution corresponding to an upper

triangular banded matrix of band m, i.e., for solving Uz = b where bisan nx 1
vector and U is an m X n upper triangular matrix such that

UG,k =0, V1i<jk<n with k—j>m.

What is the corresponding operation count?

Write the pseudocode for the LU decomposition without pivoting for banded
matrices of band m. What is the corresponding operation count?

Use the fact that the L and U factors from the LU decomposition without
pivoting of a banded matrix of band m are a banded lower triangular matrix
of band m and a banded upper triangular matrix of band m, respectively.

What is the operation count for solving a linear system corresponding to a
banded matrix of band m using a linear solver based on the LU decomposition
without pivoting of the matrix?
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12. The values of the following coupon bonds with face value $100 are given:

Bond Type - Coupon Rate Bond Price
10 months semiannual 3%. $101.30
16 months semiannual 4% $102.95
22 months annual 6% $107.35
22 months semiannual 5% $105.45

(i) List the cash flows and cash flow dates for each bond.

(ii) Identify the 4 x 4 matrix and the 4 x 1 right hand side vector corrésponding
to the linear system whose solution are the 4 months, 10 months, 16 months,
and 22 months discount factors.

(iii) Find the 4 months, 10 months, 16 months, and 22 months discount factors.

13. The values of the following coupon bonds with face value $100 are given:

Bond Type Coupon Rate Bond Price
6 months semiannual 0 $98.50

1 year semiannual 3% $101.00

18 months semiannual 5% - $102.00

2 years semiannual 3% $103.50

(i) List the cash flows and cash flow dates for each bond.

(ii) Find the 6 months, 1 year, 18 months, and 2 years discount factors.

14. The values of the following coupon bonds with face value $100 are given:

Bond Type Coupon Rate Bond Price
9 months semiannual 2% $100.80
15 months semiannual 4% $103.50
15 months annual 5% $107.50
21 months semiannual 5% $110.50

(i) List the cash flows and cash flow dates for each bond.

(i1) Find the 3 months, 9 months, 15 months, and 21 months discount factors.

15. The following discount factors are obtained by fitting market data:

Date Discount Factor
2 months 99.80
5 months 99.35
11 months 98.20
15 months 97.75

The overnight rate is 1%.

(i) What is the linear system that has to be solved for the cubic spline inter-
polation of the zero rate curve?
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(ii) Use cubic spline interpolation to find a zero rate curve for all times less
than 15 months matching the discount factors above.

(ii1) Find the value of a 13 months quarterly bond with 2.5% coupon rate.

Note: A quarterly coupon bond with face value $100, coupon rate C, and
maturity 7' pays the holder of the bond a coupon payment equal to % - 100
every three months, except at maturity. The final payment at maturity T is
equal to the face value of the bond plus one coupon payment, i.e., 100 4 %100.

Consider three assets with the following expected values, standard deviations,
and correlations of their returns:

w1 = 0.10; o1 = 0.15; p12 = —0.25;
e = 0.15; o2 = 0.30; p23 = 0.20;
us = 0.20; o3 = 035 p1,3 = 0.30.

(i) Find the covariance matrix M of the returns of the three assets.

Hint: From (7.15), it follows that the covariance matrix is given by

2
g1 0109P1,2 0103pP1,3
_ 2
M = T10201,2 o3 0203023
2
0103p1,3 0203023 g3

(ii) A minimum variance portfolio with 16% expected rate of return and fully
invested in the three assets (i.e., with no cash position) can be set up by invest-
ing a percentage w; of the total value of the portfolio in asset 4, with i = 1: 3,
where w1, wa, wa can be found by solving the following linear system:

2M 1 w 0
1 0 0 A1 = 1 , (2.100)
gt 0 0 A2 wp
w1
where w = w2 and
ws
0.1 1
pup =016, p= 015 |; 1= 1

0.2 1

Show that the matrices from the LU decomposition with row pivoting of the
matrix on the left hand side of (2.100) are

~

Il
oroo©
cooro
co—oco
cooo~
—~Oo 0O ®©




2.10. EXERCISES

1 0 0
-0.0225 1 0
L = 0.0315  0.051852 1

0.045  —-0.333333 0.038067
0.1 0.246914  0.400056

1 1 1 0
0 0.2025 0.0645 1

U = 0 0 0.210555 0.948148
0 0 0 1.297240
0 0 0 0

85

O oo

0

0

0 1;

0
—0.482738 1

0
0.15
0.192222
0.142683
—0.045059

(iii) Find the weights of each asset in the minimum variance portfolio with 16%
expected return. Find the standard deviation of the return of this portfolio.

(iv) Show that the two portfolios below have 16% expected return, and compute
the standard deviation of the returns of each portfolio:

® 30% invested in asset 1, 20% invested in asset 2, 50% invested in asset 3;

® 50% invested in asset 1, 70% invested in asset 3, and short an amount equal

to 20% of the value of the portfolio of asset 2.

Hint: If wi, w2, and w3 denote the weights of asset 1, of asset 2, and of asset
3 in the portfolio, respectively, then the expected return of the portfolio is:

W11 + wapz + waps.
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The Arrow—Debreu one period market model

Matrix setup for the one period market model.
Non-redundant securities. Replicable derivative securities.
A one period binomial model example.

Arbitrage-free markets. Necessary and sufficient conditions for arbitrage—free mar-
kets. Positive state prices.

Complete markets. Necessary and sufficient conditions for complete markets.
Risk-neutral pricing in arbitrage—free complete markets.
State prices.

A one period index options market model.

3.1 One period market models

One period market models (also called Arrow-Debreu models) are designed by se-
lecting a fixed number m of securities and assuming that, at a future time 7 > to,
where to denotes the present time, there will be a finite number n of possible states
of the market. ' '

If the one period market model is arbitrage—free (i.e., if there are no portfolios
with value 0 at present time to and with positive values in every state of the market
at time 7, see Section 3.2 for details) and complete (i.e., if any cash flow at time 7
can be synthesized with a portfolio made of the m securities, see Section 3.3), then a
unique no-arbitrage value can be found for every derivative security in this market.
In other words, every derivative security can be priced in this market. This is also
called risk—neutral pricing for arbitrage—free complete one period market models; cf.
Section 3.4.

Such a model is of interest in trying to identify and exploit market arbitrages.
An example of a one period market model for S&P 500 options can be found in
section 3.5.

We proceed with a formal introduction of one period market models with m se-
curities and n market states.

Consider a market with m securities. Let S1ty, S2tg, - .-, Smi, be the spot prices
of the securities at time to, and denote by S:, the price vector of the securities at

87
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time tg, i.e.,
Sitg
Sat,
Sty = :
S'm.to

Note that Si, is an m X 1 column vector.
At time T > to, we assume that there are n possible states of the market, denoted
&
by w!, w?, ..., w". Let Sy be the price at time 7 of asset j if state w® occurs, for
1<j<mand1l<k<n. Let

wk

U
k S;"r
st = | 7 (3.1)
s
be the price vector of the m assets if state w® occurs, for k= 1:n, and let

Sjr = (s;f;‘ s s )

be the vector of all the possible prices of asset j at time 7, for j = 1 : m. Note that
Sy " is an m x 1 column vector, and Sj- is an 1 X n row vector.

Let M, be the m x n payoff matrix made of the possible asset prices at time 7,
with the j-th row of matrix M, corresponding to the prices of asset j, for j = 1 :m,
and the k-th column of matrix M, corresponding to the asset prices in state w®, for
k=1:n,ie,

M, = col (s:’“)k L= (s:“ | 5% ... ;s:f“); (3.2)
) SIT
S2’r

My = row(Sjr)icrm = I (3.3)
Sm‘r

Definition 3.1. Consider a market model with m securities and n market states at
time 7 > to. The m securities are non—-redundant if and only if their price vectors at
time T are linearly independent.

In other words, the m securities are non-redundant if and only if the price vectors
Sir, S2r, ..., Smr are linearly independent, i.e., if and only if the (row) rank of the
payoff matriz M, is m."

Note that a necessary (but not sufficient) condition for the m securities to be
non-redundant is that there are at least as many states of the market at time 7 as
there are securities, i.e., n > m.

1Recall that the row rank and the rank of a matrix are the same; ¢f. Lemma 10.14.
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One Period Binomial Model Example:

In a one period binomial model for the evolution of the price of an asset, it is assumed
that the price at time 7 > to of an asset with price Sy at time to will be either uSo
or dSou, where d < u.

This corresponds to a one period market model with two securities, i.e., the asset
described above and cash, and two states, i.e., state w’, when the price of the asset
at time 7 is uSp, and state w?, when the price of the asset at time 7 is dSo.

Assume, without restricting the generality of the model, that the cash position at
time to is $1: If r denotes the continuously compounded annualized risk—free rate of
return of a deposit made at time to and maturing at time 7, then the future value at
time 7 of $1 at time fo is €7 710) = "% where 6t = 7 — to.

The price vector of the securities at time %o is

1

S = ( S ) (5.4)

and the payoff matrix at time 7 corresponding to this one period market model is

B erét er&t ~
M, = (uSo s ) (3.5)

If, as it was assumed, d < u, then the two securities from the one period binomial
model are nonredundant. '

To see this, note that the securities are nonredundant if and only if rank(M,) = 2.
Note that rank(M,) = 1 if and only if the rows of the matrix M, are scalar multiples
of each other, i.e., if and only if there exists a constant ¢ such that

st et uSo = ce™
(uSo dSo) = c(e ey = { dSe = ce
cerdt

= u=d=

which contradicts the assumption that d < u.
We conclude that rank(M,) = 2 and therefore that the two assets are non-
redundant. O '

Consider a portfolio made of the m securities and consisting of ®; units of asset
j at time to, j = 1 : m. The value Vi, of the portfolio at time ¢ is

Vie = Y 0iSj, = ©"Si, (3.6)

=1

where © = (©;),_,,, denotes the m X 1 column vector of securities positions; cf.
(1.5) and since Sy, = (Sjig }j=1:m.-

Lemma 3.1. Consider a one period market model with m securities and n market
states at time T > to and with payoff matriz M. = row(Sjr);_;,,,- Let © be the
positions vector at time to of a portfolio made of the m securities and assume that
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the asset positions in the portfolio remain unchanged until time 7. If V» is the 1 xn
row vector of the possible values of the portfolio at time T, then

V, = M, = > 0,8 (3.7)
=1

Proof. Let V;"k be the value at time 7 of the portfolio if state w* occurs, fork =1 : n.
Since the asset positions at time 7 are ©;, j = 1 : m, it follows that
J

vt = Yes = ets (3.8)
j=1

where S;"Tk is the value of asset j at time 7 if state wk occurs, for k = 1 : n, and
S?fk = (S’;"Tk) R see (3.1). Then, from (3.8), we obtain that

j=lm

V, = (v:J1 vt v:’") - (@‘Sfl ots¥ ... @t5$”)
= @'l ()
= O'M;,

k=ln

since M, = col (S:’k) ; of. (3.2).
k=1:n
Using (1.9) and the row form M, = row (Sjr);_,.,, of the payoff matrix M, see
(3.3), we conclude that

V, = O'M, = Y ;S
i=1

|

Definition 3.2. A derivative security is replicable in a market model with m secu-
rities and n market states at time T > to if there exists a portfolio made of the m
securities which has the same value as the derivative security in every state of the
market ot time 7.

Lemma 3.2. Consider a market model with m securities and n market states at time
T > to with payoff matric M, = 10w (Sjr);_1.m- Let sr be the price vector at time T
of a replicable derivative security, and let © = (©;)j=1.m be the positions vector of
the replicating portfolio. Then,

m
sr = O'M. = Y ©;S;. (3.9)

=1
We note that, if a derivative security is replicable, its value at time fo is not
necessarily uniquely determined, unless the market is arbitrage—free; see Theorem 3.1.

Proof. By Definition 3.2, if V. is the price vector at time 7 of the replicating portfolio
of a security with price vector s, at time 7, then V; = s,. From (3.7), we find that

sro= Vo = O'M, = > 0,8

Jj=1
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From (3.9), it follows that a derivative security is replicable if and only if the price
vector s, of the derivative security at time 7 belongs to the space generated by the
price vectors Sj-, j = 1 :m, of the m securities at time 7.

Recall from Definition 3.1 that the m securities from a market model with m
securities and n market states at time 7 > to are non—redundant if and only if their
price vectors at time 7 are linearly independent. Thus, the m securities are redundant
if and only if their price vectors are linearly dependent, in which case the payoff of one
of the securities is replicable by using the other m — 1 securities. Then, from (3.9),
it follows that at least one of the m redundant securities can be synthesized using a
portfolio containing the other m — 1 securities; see section 1.2.1 for an example of a
market with redundant securities.

3.2 Arbitrage—free markets

Arbitrage opportunities arise when there exist investment strategies that generate
guaranteed profit (i.e., with no risk). For a one period market model with m securities
and n market states, such arbitrage opportunities occur in either one of the two
following instances:

(I). If there exists a portfolio with value 0 at time to (i.e., with no set—up cost at time
to), with nonnegative values in every state of the market at time 7, and with value
strictly greater than 0 in at least one state of the market at time 7.

(IT). If there exists a portfolio with negative value at time to (i.e., with negative
set—up cost at time to, and therefore generating a positive cash flow at time o) and
with nonnegative values in every state of the market at time 7.

The following result gives necessary and sufficient conditions for a one period
market model to be arbitrage—free:

Theorem 3.1. A one period market model with m securities and n market states
is arbitrage—free if and only if there exist positive numbers (also called state prices® )
Qi >0, k=1:n, such that X

Sie = M-Q, (3.10)
where Sy, 1s the price vector of the m securities at time to, M. is the payoff matriz
at time 7, and Q = (Qk)k=1:n 18 the n X 1 column vector of state prices.

Recall that the column form of the payoff matrix M, is M, = col (S,‘E’ k) ; cf.
. k=1
(3.2). Then, from (1.7), it follows that (3.10) can be written as

S Quset. (3.11)
k=1

In other words, a one period market model is arbitrage—free if and only if the price
vector of the securities at the initial time o is a linear combination with positive
coefficients of the price vectors of the securities in the n possible states at time 7.

?See section 3.4.1 for an explanation of this nomenclature. In a nutshell, in a complete market,
Q& is the fair price at time £ of a bet that state w” will occur at time 7, or equivalently, the price
at time tg of state wk occurring at time 7.
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Note that, although Qx > 0 for all k = 1: n, Qk is not the probability for state
w* to occur, since >.v_; Qr # 1.Thus, formula (3.11) does not state that the price
vector of the securities at the initial time to is an expected value of the price vectors
of the securities at time 7. ‘

The proof of Theorem 3.1 involves the Fundamental Theorem of Linear Program-
ming, which, informally speaking, states that, if a set of linear inequalities implies
another set of linear inequalities, then it does so trivially, i.e., by linear combinations.

While the proof of Theorem 3.1 is beyond our scope here, we will establish the
sufficiency of condition (3.10) for a non-arbitrage market model to be arbitrage—free.

Proof. (Sufficiency of condition (3.10) from Theorem 3.1)
Assume that there exists a vector @ = (Qk)r=1:n such that

Sy = M,Q (3.12)

and Qx > 0, for all k = 1 : n. We will show that neither an arbitrage of type (I) nor
an arbitrage of type (II) can occur.

An arbitrage of type (I) occurs if and only if there exists an m X 1 positions vector
© and a state [, 1 <1 < n, such that

Vi = 68 =0, V=08t >0, Vh=1:in V=08 >0 (313)

Recall from (3.2) that M, = col (S:’ k) and therefore
k=L:n
n k
M.Q = Y QS5 (3.14)
k=1

see (1.7). From (3.12) and (3.14), we find that
Vi = O'S, = 0'M.Q = ©° (Z QkS$k>
k=1
= Yo'
k=1
= S v, (3.15)
k=1 '
s wk i wk
since V¥ = ©'SY ; see (3.13).
Recall from (3.13) that V&' > 0. Also, @ > 0, and, for all 1 <k < n, Qx > 0
and V* > 0. Then, it follows from (3.15) that

kil k 1
Vie = S QeVE > Qv >0,
k=1

since i > 0, which contradicts the assumption Vi, = O from the no-arbitrage
condition (3.13).
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An arbitrage of type (II) occurs if and only if there exists an m x 1 positions vector
© such that .
; t w® t qw® '
Vip=0"Si, <0 and V' =057 >0, Vk=1:n. (3.16)

Note that; since Sy, = M,Q, formula (3.15) holds, i.e.,
n k
‘/7'0 = Z Qk?V'rw .
k=1

Then, since Qr > 0 and V;"k >0 for all kK =1 :n, we find that Vi, > 0, which
contradicts the assumption that Vi, < 0 from the no—arbitrage condition (3.16). O

One Period Binomial Model Example (Continued):
The one period binomial model is arbitrage—free if and only if

rét

d < e’ < (3.17)

To see this, note that, from Theorem 3.1, it follows that the one period binomial
model is arbitrage—free if and only if there exist Q = (Q; ) with @1 > 0 and

Q
@2 > 0 such that
M:Q = Si, (3.18)
where S, is the price vector of the securities at time o given by (3.4) and M; is the
payoff matrix at time 7 given by (3.5).
The equality (3.18) can he written as follows:

er&t er&t Ql . 1 — er&th + 6“”@2 _ 1
uSy  dSo Q2 /] \ S uSoth + dSo@2 = So
which can be written as
Q+ Q = e (3.19)
u@Qi + d@Q2 = 1. (320)

By multiplying (3.19) by d and subtracting the resulting equation from (3.20) and
solving for @)1, we obtain that

1— de—r&t st er&t —d
e R (321

From (3.19) and (3.21), we find that

—rét rt .
_ue -1  _siu—e
Q2 = Py = e T —d (3.22)

Recall that d < u and therefore u —d > 0. Then, from (3.21) and (3.22), if follows
that Q1 > 0 and Qg > 0 if and only if d < €™ < u. From Theorem 3.1, we conclude
that the one period binomial model is arbitrage—free if and only if d < €™ < u,
which is what we wanted to show; cf. (3.17).



94 CHAPTER 3. THE ARROW-DEBREU ONE PERIOD MARKET MODEL

The intuition behind the no-arbitrage condition (3.17) is as follows: if (3.17) were
not satisfied, then the following arbitrage opportunities would occur:

o If d > €%, then the asset will appreciate at least at the risk free rate even if
its value at time 7 is dSp, the lower of the two possible values for the asset. The
arbitrage follows from a “buy low, sell high” strategy: borrowing cash and purchasing
the asset is guaranteed not to lose money in either state of the market at time T,
and will have a positive payoff if the value of the asset at time 7 is wSo. This is an
arbitrage opportunity of type (I).

o If ¢ > u, then the asset will appreciate at most at the risk free rate even if
its value at time T is ©So, the higher of the two possible values for the asset. The
arbitrage follows from a “buy low, sell high” strategy: shorting the asset and investing
the cash at the risk—free rate is guaranteed to not lose money in either state of the
market at time 7, and will have a positive payoff if the value of the asset at time 7
is dSo. This is an arbitrage opportunity of type (I). O

The result below is a special case of the no—arbitrage Law of One Price for
arbitrage—free one period market models; see Stefanica {36, 37] for a general form
of the Law of One Price and more applications.

Theorem 3.2. (The Law of One Price) Consider an arbitrage—free one period market
model with m securities and n market states. If two portfolios have the same value
in every state of the market at time T > to, then they must have the same value at
time to.

Proof. Let Vi, and Wi, be the values at time to of two pmtfohos which have the
same value in every state of the market at time 7, i.e. V“’ W“’ foralll <k <n.
We will show that if the one period market model is albltrage~f1ee then Viy = W,
If Vi, # Wi, assume, for example, that Vi, < Wi, and consider a portfolio with
a long position in the first portfolio and a short position in the second por tfolio. The
value at time to of this portfolio is V;, — Wy, < 0, while its value in any state w® at
time 7 is 0, since VT“’k — Wi’k =0 for all k = 1 : n. This is an arbitrage of type (II),
which contradicts the fact that the one period market model was arbitrage—free. The
contradiction comes from the assumption that Vi, # Wy, and therefore we conclude
that Vi, = Wi, 4

The value of a replicable derivative secunty in an arbitrage—free malket can be
determined as follows:

Lemma 3.3. Consider an arbilrage—free one period market model with m securities
and n market states. Let Qr > 0, k = 1 : n, be the state prices, and let Q =
(Qi)k=1:n. Let sr be the 1 X n price vector at time T of a replicable security. The
value st, at time to of the replicable security is

k22

St = 5:Q = Zka‘;—)ka (3.23)

k=1

k
where 8¢ is the value of the replicable security at time 7 if state w¥® occurs.
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Proof. If the derivative security is replicable, then there exists a portfolio made of
the m securities which has the same values at time 7 as the derivative security,
regardless of the state the market is at time 7. Let @ be the m x 1 positions vector
of the replicating portfolio. Then,

sr = O'M,, (3.24)

where M. is the payoff matrix of the m securities at time 7; cf. (3.9) from Lemma 3.2.

Since the market model is arbitrage—free, it follows from Theorem 3.2 that the
value si, at time to of the replicable derivative security must be the same as the
value ©*S;, of the replicating portfolio at time to, i.e.,

Stg = (")tStO, (325)

where St is the price vector of the m securities at, time to.
Recall from Theorem 3.1 that

Si = M.Q, ' (3.26)

where Q = (Qr)k=1:n is the column vector of the state prices Qr >0, k= 1: n.
From (3.25), (3.26), and (3.24), we conclude that

sio = 'S, = O'M.Q = 5,Q = > Qs (3.27)

which is what we wanted to show; cf. (3.23). Note that, for the last equality from
(3.27), we used the row vector —~ column vector multiplication formula (1.5) and the

fact that s, = (s‘;’1 s‘;’n) is an 1 X n row vector. 0

3.3 Complete markets

Definition 3.3. A one period market model with m securities and n market states
ot time T > to 4s complete if and only if any cash flow at time v can be replicated
using a portfolio made of the m securities.

In other words, the one period market model is complete if and only if, for any
1 X n payoff vector C;, there exists an m x 1 positions vector © such that

Cr = O'M,. (3.28)

Theorem 3.3. A one period market model with m securities and n market states at
time T > to is complete if and only if the market containsn non-redundant securities,
t.e., if and only if the row rank of the payoff matrix M, is equal to n, the number of
possible states at time T.

Note that a consequence of Theorem 3.3 is that a complete market must contain
at least as many securities as possible states in the future, i.e., that m > n, which is
an intuitive requirement.
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Proof. Let M: = row (Sjr),.,.,, be the row form of the payoff matrix M, where S;r
is the price vector of asset § at time 7, j = 1 : m; ¢f. (3.3). From (1.9), it follows
that ' '

O'M, = > 0, (3.29)
d=1

Recall from (3.28) that a market is complete if and only if for any 1 x n payoff ;
vector C, there exists an m X 1 positions vector © such that C, = ©'M.. Then,
from (3.29), we find that the market is complete if and only if

< SirySory ey Smr > = {Z@jsﬁ withejeR,jzl:m} = R™",

j=1

i.e., if R'™*™ is the space generated by the vectors Sjr, j = 1 : m. This happens if '
and only if there are exactly n linearly independent vectors among the price vectors
S1r, Szrs ..., Smr of the m securities, and therefore if and only if there exist exactly
n non-redundant securities. 0

Lemma 3.4. A one period market model with n securities and n states at time T > Lo '
is complete if and only if the payoff matriz M, is nonsingular.

Proof. From Theorem 3.3, it follows a one period market model with n securities and
n states is complete if and only if the matrix M- has row rank n, i.e., it has n linearly '
independent rows. Since M- is an n X n matrix, it follows that rank(M,) = n, and,
from Theorem 1.1, we conclude that the matrix M, is nonsingular. 0O )

One Period Binomial Model Ezample (Continued):
The one period binomial model is complete.
To see this, recall from (3.5) that the payoff matrix at time 7 corresponding to

one period binomial model is
o erét e‘rét
M: = <u50. dso )

From (10.6), we obtain that

det(M,) = €"'dS, —e"'uSy = €™t So(d ~ u),

and therefore det(M;) # 0, since we assumed that d < u. ,
Then, from Theorem 1.2, it follows that the matrix M, is nonsingular, and, from ‘
Lemma 3.4, we conclude that the one period binomial model is complete. O |
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" 3.4 Risk—neutral pricing in arbitrage—free complete
markets

Theorem 3.4. Consider an arbitrage—free complete one period market model with
m securities and n market states at time 7 > to, and let Q@ = (Qx)k=1:n be the vector
of state prices.

(i) The value Vi, at time to of a derivative security with payoff vector V, at time
18

Vip = Vi@ = S Quv. C (330)

(i) Assume one of the securities is cash. Assume that the risk—free rate is constant
between times to and 7, and denote it by 7.

The value Vi, at time to of a derivative security is the discounted ezpected value
of its payoff V» at time T with respect to the discrete risk-neutral probability pry
associated to each state of the market at tzme T given by pry (k) = ™' Qy, for all
k=1:n, where §t = 7 — 1o, i.e.,

n

Vio = ¢ pan (V" = e Bry [V4]. - (3.31)
k=1

Proof. (i) Recall from Lemma 3.3 that the value Vi, at time ¢; of any replicable
security in an arbitrage—free one period market model is given by Vi, = V;Q, where
Vr is the price vector at time 7 of the replicable security. Since any derivative security
is replicable in a complete market, we conclude that Vi, = V,Q for every derivative
security in a complete and arbitrage—free one period market model.

(i) Since Qx > 0 for all k = 1 : n, a discrete probability (called the risk—neutral
probability) pry (k) associated to each state w® of the market at time 7 can be
obtained as follows:

Qr

k) = = Vk=1:n 3.32
prn (k) ST (3.32)
Note that
pryv(k) >0, Vk=1:n; ZpRN(k) =1.
im1
Since

Qr = <Z Qz> pen(k), (3.33)

see (3.32), it follows from (3.30) and (3.33) that

Veo

i
[
o
o
3
i
[
TN
[
o
~—
=
&
=2
=
=

= 3 Qi) iPRN(k)‘/}wk~ (3.34)
1
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Assume without restricting the generality that the first security is a $1 cash po-
sition at time tp. Since the continuously compounded risk free rate r is constant
between the times to and 7, it follows that

Sip=1 and 8% =€, Vi=1:n. (3.35)
Recall the no-arbitrage condition S;, = M- Q, see (3.10), and, from (3.3), that

M = 10w (Sjr) jy,m- From (1.8), it follows that the first entry of M,Q is 51,Q), and
therefore, since Sy, = M, @), we find that

Slto = Sl»,—Q. (336)
Since S1r = (Si"T1 ‘{’:) and Q = (Q;)i=1:n, We obtain from (3.36) and (1.5) that
S = DS Qs (3.37)

i=1

Then, from (3.37) and (3.35), it follows that

n n
5t 5t
1 = E Q= e E Qi,
i=1 i=1

and therefore we obtain that

Zn: Qi = e ™. (3.38)
=1

Then, the discrete risk-—neutral probability given by (3.32) becomes

Qk
= ﬁ = eraLQk, Vk=1: n, (339)
i=1 Wi

and, from (3.34) and (3.38), we find that

pan (k)

- k —76t 7a
V;fo = e_T& ZPRN (k)v-rw = € MERN [V‘r] y
k=1

where Ern (V7] = 3 4 _, PRN (k)VT‘"k denotes the expected value of the payoff V. of
the derivative security with respect to the risk-neutral distribution prn. |

One Period Binomial Model Example (Continued):

In section 3.3, we showed that the one period binomial model is complete. Also, recall
from (3.17), (3.21), and (3.22) that the one period binomial model is arbitrage-free
if and only if d < €™ < u and the state prices are

e U — ertst

u—d

st 6T6t _ d

r = ¢ Py

Q2 = e (3.40)
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From (3.39) and (3.40), we find that the risk-neutral probabilities associated to each
of the two states of the market at time 7 are

T8t
» e —d
prn(l) = Q' = —
_rot
pan(®) = Q= Lt

Then, we obtain from (3.31) that the value at time to of a derivative security with
payoffs at time 7 equal to V;(1), if the “up” state occurs, and equal to V;(2), if the
“down” state occurs, is

‘/to = e—rét (pRN(l)VT(l) + DRN (2)‘/7(2))
rét - erét
= o (eu_ddVT(l) + %VT(Q)) o (3.41)

‘We conclude this section by providing further intuition on the no-arbitrage con-
dition (3.11) for a one period market model, if the market is also complete. From
the definition (3.32) of the discrete risk—neutral state probabilities at time 7, we find

that
Qr = <ZQ1> prn (k).
i=1

Then, the no-arbitrage condition (3.11) can be written as

>Qus = Z(Z@) prn (K)S5"
(ZQ1> S pan(k)SY"
k=1

i=1

i

Sto

I}

Y pan(k)SE (3.42)
i=1

where the last equality follows from (3.38).

Thus, in a complete market, the no-arbitrage condition (3.11) states that the
initial values at time to of the m securities are equal to the present values of the
risk—neutral expected values of the securities at time 7.

3.4.1 State prices

We can now explain why the values Q° > 0, 4 = 1 : n, which appeared in the
arbitrage—free condition (3.10) for a one period market model are called state prices.

Consider a derivative security paying $1 if state w® occurs at time 7 and 0 other-
wise; this derivative security is also called an insurance contract on the state w?. In
other words, if C; is the n x 1 price vector of the insurance contract at time 7, then

' =0, Vi<k#p<n C =1
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If the market is complete and arbitrage—free, it follows from (3.30) that the value
Ct, of the insurance contract at time to is

We conclude that, for any p = 1 : n, @p is the price of the insurance contract

paying $1 if state p occurs, which can also be regarded as the price at time to of state

wP occurring at time 7.

3.5 A one period index options market model

A snapshot taken on March 9, 2012, of the mid prices (i.e., the average of the bid
and ask prices) and trading volumes of S&P 500 options maturing on December 22,
2012, (i.e., 12/22/2012), corresponding to a spot price of the index of 1,370, can be
found in Table 3.1.

Table 3.1: Dec 2012 SPX option prices on 3/9/2012

Call Strike Price | Volume [[ Put Strike Price | Volume
C1175 225.40 250 P1175 46.60 1
C1200 205.55 215 P1200 51.55 3204
C1225 186.20 1 P1225 57.15 1401
C1250 167.50 650 P1250 63.30 104
C1275 149.15 163 P1275 70.15 56
C1300 131.70 1 P1300 77.70 150
C13256 115.25 40 P1325 86.20 200
C1350 99.55 320 P1350 95.30 10118
C1375 84.90 1002 P1375 105.30 1250
C1400 71.10 5300 P1400 116.55 1250
C1425 58.70 4 P1425 129.00 200
1450 47.25 9050 P1450 143.20 1
C1500 29.25 1000 P1500 173.95 6
C1550 15.80 1000 P1550 210.80 9
C1575 11.10 200 P1575 230.90 0
C1600 7.90 546 P1600 252.40 9

We use a small number of these options to construct an arbitrage—{ree complete
one period market model for the 12/22/2012 S&P options as follows:®> We choose one
call option and one put option with the same strike, with all the other options having
different strikes. The strikes of the options will cover the majority of the range of
strikes, and are best not to be close to each other; e.g., the strikes of the options from
(3.43) are at least 50 apart. We will subsequently show that the rest of the options
from Table 3.1 are accurately priced in this model.

3The author first learned of this type of one period market models for options from the regret-
ted Salih Neftci; see also Chapter 11 from the monograph Neftci [31].
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Consider the following seven securities:*

P1200;
P1300;
P1400;
C1400; (3.43)
C1450;
C1550;
C1600.

Note that the options from (3.43) are out-of-the-money puts and out-of-the-money
calls,® plus a put option (P1400) and a call option (C1400) struck around at—the-
money; recall that the spot price of the index was 1,370. For details on at-the-money,
out—of-the-money, and in—the—money options, see Section 10.3.
The price vector of the securities from (3.43) at time to is the vector of their mid
prices from Table 3.1, ie.,
51.55
77.70
116.55
Sy = 71.10 | . (3.44)
47.25 :
15.80
7.90

Seven possible states of the index price on 12/22/2012 are obtained as follows:
There are six option strikes corresponding to_the securities above, i.e.,

1200, 1300, 1400, 1450, 1550, 1600.

The five midpoints
1250, 1350, 1425, 1500, 1575

between the strikes above will give the following five states:

w?: {S(r) = 1250} W’ {S(7) = 1500};
W? i {S(r) =1350};  W®: {S(r) = 1575};
w* i {S(r) = 1425},

where S(7) denotes the value of the S&P 500 index on 12/22/2012. Below the lowest
strike and above the highest strike we choose the following two states:®

w': {8(r) =1000}; W' : {S(r)=1700}.

“More choices of securities are discussed in exercises at the end of the chapter.

5The choice of out—of-the—-money options is driven by the fact that options market makers
only trade out—of-the-money options, which have the same implied volatilities as corresponding
in—the—money options. For example, the trading volume of the out—of—the—money options (C1400
through C1600 and P1175 through P1350) from TFable 3.1 is 32,359, while the trading volume of
the in—the—money options (C1175 through C1350 and P1400 through P1600 is 3,134, about 10
times smaller. '

SThe choice of the two states below the smallest option strike and above the largest strike could
influence whether the one period market model is arbitrage—free, and the overall performance of
the risk—neutral pricing of the other derivative securities.
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Recall from (10.90) and (10.91) that the payoffs at maturity of call and put options
are, respectively,

S(T) - K, it S(T) > K;
C(T) = max(S(T) - K,0) = { ( )o ¢ SET% Z K (349
0, if S(T) > K;
P(T) = max(K - S(T),0) = { K - 8(T), ¢ SET% s g (349
Then, the payoff matrix of this one period market model is
200 0 0 0O 0 0 0
300 50 0 0 0 0 O
400 150 50 0 0 0 O
M, = 0 0 0 25 100 175 300 |. (3.47)
0 0 0 0 50 125 250
0 0 0 0 0 25 150
o 0 0 0 0 0 100

For example, M (3,3) is the payoff of the third security P1400, i.e., of the put option
with strike 1400, if state w® occurs, i.e., if S(r) = 1350, and from (3.46) we find that

M,(3,3) = max(1400 — S(7),0) = max(1400 — 1350,0) = 50.

Similarly, M,(5,6) is the payoft of the fifth security C1450, i.e., of the call option
with strike 1450, if state w® occurs, i.e., if S(7) = 1575, and from (3.45) we find that

M, (5,6) = max(S(r) —1450,0) = max(1575 — 1450,0) = 125.

We now show that this model is complete and arbitrage-free.

Note that the matrix M, is made of a 3 x 3 lower triangular block and a 4 x 4
upper triangular block. Thus, its determinant det(M-) is the product of the diagonal
entries of M,, and thercfore nonzero; see Section 10.1.1. 1t follows that the matrix
M, is nonsingular, see Theorem 1.2, and, from Lemma 3.4, we conclude that this
market model is complete.

To decide whether this market model is arbitrage—free, we must solve the linear
system M,Q = Sy,, where M, and S, are given by (3.47) and (3.44), respectively,
and check whether all the entries of the vector @ are positive.

Note that, due to the block structure of the payoff matrix M, solving the linear
system M-Q = Si, amounts to a forward substitution corresponding to the 3 x 3
lower triangular block of the matrix M, for computing the first 3 entries of @, and
a backward substitution corresponding to the 4 x 4 upper triangular block of M- for
computing the last 4 entries of @, i.e., :

200 O 0 51.55
forward_subst 300 50 O , 77.70
400 150 50 116.55

Q= 25 100 175 300 71.10
) 0 50 125 250 47.25
backward_subst 0o 0 2% 150 || 15.80

0 0 0 100 7.90
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We obtain that
0.2578
0.0075
0.2465 . . :
Q = | o010 |. (3.48)
0.1550
0.1580
0.0790

Since all the entries of @) are positive, we conclude from Theorem 3.1 that the one
period market model is arbitrage-free. y

We conclude that the one period options market model above is both arbitrage—
free and complete.

Thus, all the other options can be priced using risk-neutral pricing; cf. Theo-
rem 3.4. For example, the no-arbitrage value of C1300 can be obtained as follows:
The payoff vector C1300- of the call option with strike 1300 at maturity 12/22/2012
is

C1300, = (0 0 50 125 200 275 400), (3.49)

since, e.g., C1300.(5) is the payoff of a call option with strike 1300 if state w® occurs,
i.e., if S(7) = 1500, and from (3.45) we find that

C1300,(5) = max(S(r) — 1300,0) = max(1500 —1300,0) = 200.
Then, from (3.30), we find that the no- arbitrage value C1300moder of C1300 given

by this one period market model is

T
C1300mocer = CI1300, Q@ = > Q(:)C1300,(4)

i=1

i

139.6250,

where C1300. is given by (3.49) and Q is given by (3.48). The corresponding per-
centage error is 11“??;—7%?’& = 0.0602, i.e., 6.02% over the mid value 131.70 of
C1300.

To estimate the accuracy of this one period market model, we use formula (3.30)
to find the risk-neutral value of each of the 32 —7 = 25 options from Table 3.1 which
were not chosen as securities in the model. These values are denoted by Vinoae:(4),
for i = 1 : 25, and are compared to the mid prices Vimid(i) corresponding to the
same option, for ¢ = 1: 25. The percentage root-mean-squared error (RMSE) of the
model is then calculated as follows:

RMSE = J Z(Vmodez(z (z);md( 0)?

mzd

I

0.0506 = 5.06%;:

In other words, the options that were not chosen to.be securities in the model are
Priced, on average, within 5% of their mid price by using the seven options from this
one period market model.
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3.6 References

The Arrow-Debreu model was introduced in the seminal paper [5]; a modern expo-
sition can be found in Avellaneda and Laurence [7].

Neftci [31] covers the one period market model as a general pricing framework for
derivative securities, and presents its uses by financial engineering practitioners.

The one period binomial tree risk-neutral pricing formula (3.41) can also be ob-
tained by using either a hedged portfolio or payoff replication; see Blyth [8] for more
details. Binomial and trinomial trees are used in practice as numerical methods for
pricing derivative securities, and they are implemented on many time steps. The
calibration of tree models and numerical implementation details can be found in
Clewlow and Strickland [11] and Wilmott [45].

ek
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- 3.7 Exercises

1.

In three months, the value of an asset with spot price $50 will.be either $60
or $40, with probability one half. What is the value of a three months at—the—
money put on this asset? Assume the risk-free interest rate is zero.

. A one period market with four securities and four states at time 7 > ¢o has the

following price vector of spot prices at the initial time to:

4
100

1 )
-2

Sty =

and the following payoff matrix at time 7

1 1 1 1
20 22 24 26
-5 -3 -1 2

4 2 0 0

M, =

Find an arbitrage opportunity.

. A one period market model is made of four securities and has four states at

time 7 > to. Assume that the market model is complete and that the state
prices are —1, 1, 2, and 4, respectively. Find an arbitrage opportunity.

. At time 7 > fo, an asset with spot price S at time to will be worth either uSo,

in which case the value of $1 today would be FV4, or dSp, in which case the
value of $1 today would be F'Vz, with d < u. Consider the one period market
model with two securities, i.e., cash and the asset, and two states, i.e., asset
value at time 7 equal to wSy and asset value at time 7 equal to dSo.

(i) Show that the payoff matrix at time 7 of this one period market model is
 FVi FV,
uSo dSo
(i) Find necessary and sufficient conditions for the model to be complete.

(iii) Show that this model is arbitrage-free if and only if
u d U d
in{ ——, —— _ . 3.
mm(FV&’FVz) <1« max(FW’FVz) (3.50)

(iv) Show that, if FVi = FVo = e, the condition (3.50) is equivalent to
the no-arbitrage condition d < €™ < u for the classical one period binomial
model.
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5. In a one period trinomial model, it is assumed that the price at time 7 > to
of an asset with price Sp at time to will be either dSy, mSo, or uSo, where
d<m<u.

- Consider a one period market model with two securities, i.e., the asset described
above and cash, and three states, i.e., state w', when the price of the asset at
time T is dSo, state w?, when the price of the asset at time 7 is mSo, and state
w®, when the price of the asset at time 7 is uSo.

(i) Show that the one period trinomial model is incomplete.

(ii) Show that the one period trinomial model is arbitrage-free if and only if

where 0t = 7 — to.

6. In three months, the value of an asset with spot price $40 will be either $32,
$38, $42, or $44. The value of a three months European call option with strike
$36 on this asset is $8 and the value of a three months Euwropean put option
with strike $40 on this asset is $5. For simplicity, assume zero risk free rates.
Consider the one period market model with the following four securities and
the following four states in three months:

Securities:
e cash;
e asset;

e three months call with strike $36;
e three months put with strike $40; : i

Market states: ' / {
¢ asset price $32;

e asset price $38;

e asset price $42;

e asset price $44.

(1) Find the payoff matrix of this model, and show that the four securities are
non-redundant.

(i) Show that the one period market model is complete.

(iii) How do you replicate a bull spread made of a long position in a three
months call with strike $34 and a short position in a three months call with
strike $40 in this one period market?

(iv) Show that this model is not arbitrage~free, and find an arbitrage opportu-
nity.
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7. Two assets have spot prices $20 and $30, respectively. Assume that, in five
months, the first asset will be worth either $18 or $22, and the second asset
will be worth either $28 or $32. Also, assume that the risk—free rate for five
months cash deposits is 0. Consider the one period market model with the
following three securities and the following four states in five months:
Securities:

e cash;
o first asset;

e second asset.

Market states:

e first asset at $22 and second asset at $32;
o first asset at $22 and second asset at $28;
o first asset at $18 and second asset at $32;

e first asset at $18 and second asset at $28.
(i) Show that this one period market model is arbitrage—free.

(ii) Show that, in this one period market model, it is not possible to replicate a
derivative security that pays $1 if the first state occurs (i.e., if, in five months,
the first asset is worth $22 and the second asset is worth $32), and does not pay
anything if any other state occurs. Conclude that the model is not complete.

Hint: For (i), consider the case when all state prices are equal to ;.

8. This exercise is related to the example from Chapter 1.

Consider two assets with spot prices $30 and $50, respectively. Assume that,
in three months, the first asset will be worth either $34 or $24, and the second
asset will be worth either $56, $51, or $46. The value of a three months at—
the-money European call option with strike $30 on the first asset is $2.5, the
value of a three months at-the-money European call option with strike $50 on
the second, asset is $2.7, and the value of a three months European put option
with strike $52 on the second asset is $4.1. Assume that the future value in
three months of $1 today is $1.01. Consider the one period market model with
the following six securities and the following six states in three months:
Securities:

e cash;

o first asset;

e second asset;

e three months ATM call on the first asset;

e three months ATM call on the second asset;

e three months put with strike $52 on the second asset;

Market states:
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e first asset at $34 and second asset at $56; |
o first asset at $34 and second asset at $51;
o first asset at $34 and second asset at $46; - . '
o first asset at $24 and second asset at $56;
o first asset at $24 and second asset at $51;
o first asset at $24 and second asset at $46.

(i) Show that the payoff matrix for this market model is nonsingular, and ;
conclude that the market is complete.

(ii) Compute the state prices for this model, and show that the market is .
arbitrage—free.

(iii) Use risk-neutral pricing to find the value of a three months call option
with strike $52 on the second asset.

(iv) Use Put—Call parity to find the value of a three months call option with
strike $52 on the second asset, and compare it to the value computed at (iii).

(v) What is the value of a bear spread made of a long position in a three i
months put option with strike $35 on the first asset and a short position in a '
three months put option with strike $28 on the first asset? :

9. This exercise refers to the S&P 500 options prices from Table 3.1.
Consider a one period market model with the following nine securities:
P1200; P1275; P1350; P1375; C1375; C1400; C1450; C1550; C1600. !

The nine states of the index price at maturity are as follows: seven states
correspond to the midpoints between the strikes of the options above, i.e.,

w?: {S(r) =1237.50}; W {S(r) = 1425};
W {S(r) =1312.50};  w': {S(7) = 1500};
W' {S(r) =1362.50};  w®: {S(r) = 1575}
w®: {S(r) = 1387.50};

the first and last state are

w': {S(r) =950} w®: {S(r) = 1675}

(i) Find the payoff matrix M. of this one period market model, and show that
the model is complete.

(ii) Find the state prices vector @ and show that the model is arbitrage—free.

(iii) Compute the root-mean-squared error (RMSE) of this model. Comment
on the precision of this nine securities model compared to the seven securities
model from section 3.5.

'
]
i
)
]
)
)

Lk
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10. This problem refers to the S&P 500 options prices from Table 3.1.

Consider a one period market model with the same seven securities as in sec-
tion 3.5, i.e.,

P1200; P1300; P1400; C1400; C1450; C1550; C1600.
The states of this market are the midpoints of the strike, i.e.,
W' {S(r) =1250};  W®: {S(7) = 1500};

w?: {S(r) = 1350}; Wb {S(r) = 1575}
W' {S(7) = 1425},

and the first and last state are

1

w': {S(r) =1100}; W' : {S(r) = 1700}.

Show that this market model is not arbitrage—free.
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Chapter 4

Eigenvalues and eigenvectors.

Eigenvalues and corresponding eigenvectors of a matrix.

The characteristic polynomial of a matrix. Eigenvalues and the roots of the charac-
teristic polynomial. Multiplicity of eigenvalues.

Linear independent eigenvectors. The number of eigenvalues and eigenvectors of a
matrix.

Diagonal forms. Diagonalizable matrices. Matrices with a full set of linearly inde-
pendent eigenvectors.

Diagonally dominant matrices. Gershgorin’s Theorem. Nonsingularity of strictly
diagonally dominant matrices.

Eigenvalues and eigenvectors of tridiagonal symmetric matrices.

4.1 Properties and identifying eigenvalues and
eigenvectors

Definition 4.1. If A is a square matriz, then X is an eigenvalue of A if and only if
there exists a column vector v # 0 such that

Av = . (4.1)
The vector v is called an eigenvector corresponding to A.

Note that, even if all the entries of the matrix A are real numbers, an eigenvalue of
A may be a complex number, and the corresponding eigenvector may have complex
entries.

If v is an eigenvector corresponding to the eigenvalue A of A, then, for any constant
¢, the vector cv is also an eigenvector of A corresponding to A, since

Alev) = e(Av) = c(h) = Aew).

However, cv is not considered to be an eigenvector different than v. Only linearly
independent eigenvectors count as different eigenvectors. As seen in the example
below, it is possible for one eigenvalue to have more than one linearly independent
eigenvector.

111
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Ezample: This example is for illustration purposes only; in practice, the eigenval-
ues and the corresponding eigenvectors of a matrix are computed using numerical
methods; see section 4.4 for more details.

(1) Let
-8 0 3
A = 3 -2 -15
-18 0 - 7

We will show that' the matrix A has eigenvalues 1 and —2, with

0 1
eigenvectors 1 and 0 corresponding to  — 2
0 2
2
eigenvector -1 corresponding to 1.
6

Denote by A an eigenvalue of A and by v = (v;)i=1.3 a corresponding eigenvector
of A. Then, Av = Av, which can be written as the following linear system:

—8u1+3uz = vy (4.2)
3’[)1 - 21)2 - 1.5’1)3 = /\Uz; ’ (43)
—~18v1 +Tvs = Avs. (44)

By eliminating vs from (4.2) and (4.4), we obtain that
N+r—2u = A+ —Dwv = 0.

Thus, either v7 =0, 0or A= ~2,or A= 1.

o If vy = 0, it follows from (4.2) that vs = 0. From (4.3), we find that —2vz = Jva.
Recall that v # 0, since v is an eigenvector. Thus, vz # 0, and therefore A = —2. We

conclude that A = —2 is an eigenvalue of A with corresponding eigenvector
0 0
V2 = V2 1
0 0
Since multiplying of an eigenvector by a constant does not change the eigenvector,
0
we choose va = 1 and conclude that 1 is an eigenvector corresponding to the
0

eigenvalue A = —2.

e If A\ = —2, then (4.2) and (4.4) are both equivalent to vs = 2v;, and (4.3) holds
true with no further constraint on v1, vz, or vs. Thus, any eigenvector corresponding
to A = —2 is of the form

V1 1 0
V2 = U 0 + wvg 1
2’01 2 0

1A simpler way to compute the eigenvalues and the corresponding eigenvectors of the matrix
A, using the characteristic polynomial of A, will be given subsequently.
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" We conclude that the eigenvalue A = —2 has two linearly independent eigehvectors,
1 0
0 sand 1
2 0
o If A = 1, then (4.2) and (4.4) are both equivalent to vs = 3v1, and (4.3) is equivalent
to vz = —0.5v1. Thus, any eigenvector corresponding to A = 1 is of the form
(%1 2
~0.5’l)1 = 0.51}1 -1 3
3u1 6
2
and we conclude that the eigenvalue A = 1 has one eigenvector, e.g., -1
6

(ii) Similarly, it can be shown that the matrix

2 2 -1
B = -7 -4 25
2 4 -1

has eigenvalues 1 and —2, and has only one linearly independent eigenvector corre-
1

sponding to each eigenvalue, e.g., the eigenvector -1 corresponding to —2 and
2

0
the eigenvector 1 corresponding to 1. O
2

Definition 4.2. Let A be a square matriz of size n. The characteristic polynomial
P4(t) of the matriz A is the polynomial of degree n given by

Pa(t) = det(tl — A), (4.5)
where I is the identity matriz of size n.

Theorem 4.1. If A is a square matriz, then X is an eigénvalue of A if and only if
A is a root of the characteristic polynomial Pa(t) of A. i.e., if and only if

det(\ — A) = 0.

Proof. If A is an eigenvalue of A with v # 0 a corresponding eigenvector, then Av =
Av, which can be written as (Al — A)v = 0. From (1.78) and (1.81), it follows that

Av=>dv &= (M -Aw=0 <> ve Nul(A\l-A)
< Null(A\T — A) # {0} <= AI — A singular matrix
&= det(A — A) =0.

We conclude that ) is an eigenvalue of A if and only if Pa()) =det(A\[—~A)=0. O

The result below is a direct consequence of Theorem 4.1:
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Lemma 4.1. Let A be a square matriz of size n and let X;, ¢ = 1 : n, be the
eigenvalues of A. The characteristic polynomial Pa(t) = dei(t] — A) of A can be

written as
n

Pat) = []-X). (4.6)

=1

Examples: We revisit the examples from the beginning of this section, and identify
the eigenvalues of the matrices by using characteristic polynomials.

(i) Let

-8 0 3
A = 3 -2 15
-18 0 7

Using formula (10.8) for computing the determinant of a 3 x 3 matrix, we find

that the characteristic polynomial of A is

t+8 0 -3
Pa(t) = det(tI—A) = | =3 t+2 15
18 0 t-7
= (8t +2(E—T) - (=3t +2(18) = (t+2)(E +t—2)
(t+2)>%(t - 1).
The roots of Pa(t) are A1 = A2 = —2 and A3 = 1. We identify the eigenvectors
corresponding to each eigenvalue separately:

e If A = —2, any corresponding eigenvector v # 0 is a solution to Av = —2v, which
can be written as

—8v1 +3us = —2u vz = 2u1
3vy — 2v2 — 1.bug = —2v9 < v = 21
—18v; +7vz = —2u3 vz = 2un
Thus, any eigenvector corresponding to the eigenvalue A = —2 is of the form
U1 1 0
v o= V2 = v 0 + v 1 ,
21}1 2 0
and we conclude that the eigenvalue A\ = —2 has two linearly independent eigenvec-
1 0
tors, e.g., 0 and 1
2 0

o If A = 1, any corresponding eigenvector v # 0 is.a solution to Av = v, which can
be written as

—8uvi1+3us = v vy = 3u1
v —2ve— 1.bvg = w2 = 3ve = 3vi1— l.bus
—18v1 + Tvs = w3 vs = 30
U3 = 31)1
= va = —0.bu;
U3 == 31)1

o
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Thus, any eigenvector corresponding to the eigenvalue A = 1 is of the form

U1 2
v = —0.5v; = 0.5v1 -1
3v1 6
2
We conclude that the eigenvalue A = 1 has one eigenvector, e.g., -1
6
(ii) Let
2 2 -1
B = -7 —4 25
2 4 -1

The characteristic polynomial of B is
Pp(t) = det(tI—-B) = 7 t+4 -25

Using formula (10.8), we find that
Pa(t) = 432 —4 = (t—-1)(t+2)%
The roots of the characteristic polynomial Pg(t) are A1 = A2 = —2 and A3 =1,

o If A\ = —2, any corresponding eigenvector v # 0 is a solution to Bv = —2v, which
can be written as

207 + 23 —v3 = —211 ‘ vs = 4dvy 4+ 2u2
—Tv1 —4ve +2.5v3 = —2vug < < 2bvz = Tvi+ 2
201 +4vpy —vs = —2us3 vz = —2v1 —4uz
L E— 4’i}1’ + 2vo vy = 2u
— Svy = ldvy F4dve < vz = 2u
0 = 6uv1+6u vz = —n
Thus, any eigenvector corresponding to the eigenvalue A = —2 is of the form
V1 1
v o= —V1 = 7 —1
21}1 2
1
and we conclude that the eigenvalue A = —2 has one eigenvector, e.g., -1
2

o If A = 1, any corresponding eigenvector v # 0 is a solution to Bv = v, which can
be written as

200 + 22 —v3s = v vy = v+ 20
—Tvy — 4v2 + 2.5vs5 = V2 <= 5vs = 14wvi + 10v2
207 +4vs —vs = w3 vy = vy + 202
vs = v1+2v2 vz = 202

= 0 = 9 = n = 0
vsg = w1+ 202 vg = 2u2
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Thus, any eigenvector corresponding to the eigenvalue A = 1 is of the form

0 0
v o= V2 = Vg 1
21}2 2

We conclude that the eigenvalue A = 1 has one eigenvector, e.g., ]

N = O

Ezample: The characteristic polynomial of the 2 x 2 matrix A = ( Z Z > is?

Pa(t) = t*— (a+ d)t+ad — be, (4.7)

since, from definition (4.5) and the formula (10 6) for the determinant of a2x2
matrix, it follows that

Pa(t) = det(tI —A) = det( t:C“ t”_bd>

(t—a)(t —d) — (=b)(—¢)
t? — (a4 d)t+ad —be. O

i

Eramples:

(i) Let D = diag(d;)i—1:» be a diagonal matrix of size n. The characteristic polyno-

mial of D is

Pp(t) = det(tI — D) = [](t—ds);
i=1
cf. (10.1). The roots of the polynomial Pp(t), i.e., the solutions to Pp(t) = 0, are
d;, 1 = 1 : n. We conclude that the eigenvalues of D are its diagonal entries. Note
that the corresponding eigenvector for the eigenvalue d; is e;, the i-th column of the
identity matrix, i.e.,
Dei = diei, Vi=1:n.

Thus, a diagonal matrix of size n has n eigenvectors.

(ii) Let L be a lower triangular matrix of size n. The characteristic polynomial of L
is

P(t) = det(tI — L) H(t—L(“

cf. (10.3). The roots of Pr(t), i.e., the solutions to Pr(t) = 0, are L(%,4),4 =1 : n.
We conclude that the eigenvalues of L are its diagonal entries L(%,1), ¢ = 1 : n. Note
that the eigenvector corresponding to the eigenvalue L(n,n) is e, the n-th column of
the identity matrix. However, the eigenvector corresponding to the eigenvalue L(i,1),
with 1 < 1 < (n — 1), is not necessarily e;, the i-th column of the identity matrix.

?Note that (4.7) corresponds to (4.19), since the trace and determinant of the 2 X 2 matrix A
are tr(A) = a + d and det(A) = ad — bc, respectively.
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‘ (ili) Let U be an upper triangular matrix of size n. The characteristic polynomial of
Uis
. - n
Py(t) = det(tI —U) = []t-U(,i); ' (4.8)
i=1
cf. (10.4). Since the roots of Py(t) are U(%,%), ¢ = 1 : n, we conclude that the
eigenvalues of U are its diagonal entries U(¢,4), 1 =1 : n. Note that the eigenvector
corresponding to the eigenvalue U(1,1) is ey, the first column of the identity matrix.
However, the eigenvector corresponding to the eigenvalue U(3,7), with 2 < ¢ < n, is
not necessarily e;, the i-th column of the identity matrix. [] -

Definition 4.3. If A is a root of multiplicity mx of the characteristic polynomial
Pa(t) corresponding to matriz A, then, by definition, mx is the multiplicity of the
etgenvalue A of A.

Theorem 4.2. A square matriz of size n has n eigenvalues, counted with their
multiplicities; some of these eigenvalues may be complex numbers.
In other words, if A is a square matriz of size n, then

EmA:n

AEA(A)
where M(A) is the set of all the eigenvalues® of A. |

As a direct consequence of Theorem 4.2, note that a square matrix of size n has
at most n distinct eigenvalues.

Proof. If A is a square matrix of size n, then its characteristic polynomial P4(t) has
degree n. The roots of P4(t) are the eigenvalues of A;<f. “Theorem 4.1. Recall
from the Fundamental Theorem of Algebra that a polynomial of degree n with real
coeflicients has exactly n roots when counted with their multiplicities. Note that the
roots of the polynomial may be complex numbers.

From Definition 4.3 of the multiplicity of an eigenvalue, and since the sum of the
multiplicities of the roots of a polynomial of degree n is equal to n, we conclude that
the number of the eigenvalues of A, counted with their multiplicities, is n. O

Definition 4.4. The number of different eigenvectors corresponding to an eigenvalue
A is equal to the largest number of linearly independent eigenvectors corresponding
to A. In other words, if Vx = {v such that Av = v} is the space of the eigenvectors
of the matriz A corresponding to )\, then the number of different eigenvectors corre-
sponding to an eigenvalue X is equal to dim(Vi), whe're Vi denotes the dimension of
the space Vi; see Definition 1.11.

Every eigenvalue has at least one corresponding eigenvector. If an eigenvalue A
has multiplicity ma, then there could exist at most m linearly independent eigen-
vectors corresponding to A. However, it might also happen that there are less than
my eigenvectors corresponding to A, and therefore a matrix might have less than n
linearly independent eigenvectors; see the example at the beginning of this section,
as well as the example below:

3The set of all the eigenvalues of a matrix is also called the spectrum of the matrix.
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Example: The n x n matrix®

d 1 0 0
0 d 1
A = 0 (4.9)
oy
0 0 d
1
0 .
has eigenvalue d of multiplicity n, and . is the only eigenvector corresponding
0

to d.

Answer: From (4.8) and (10.5), it follows that the characteristic polynomial of the
upper triangular matrix A is

Pa(t) = det(tI — A) = (t —d)™.

Thus, the polynomial Pa(t) has root d with multiplicity n, and we conclude that the
matrix A has eigenvalue d with multiplicity n.

Let v = (v:)i=1:n be an eigenvector of the matrix A corresponding to the eigenvalue
d. Then, Av = dv, i.e.,

dvi +vigr = dv;,, Yi=1:(n—1);
: Up = 0
— {vi+1 = 0, Vi=1:(n—1)
vy = 0

U1 1 1

0 0 0
Thus, v = . = . , and we conclude that . is the only eigen-

0 0 0
vector corresponding to the eigenvalue d of the matrix A. O

The number of eigenvectors of a matrix is, by definition, equal to the number of
linearly independent eigenvectors of the matrix. It is important to note that eigenvec-
tors corresponding to different eigenvalues are linearly independent; see Lemma 4.2
below:

Lemma 4.2. The eigenvectors corresponding to different eigenvalues of a matriz are
linearly independent.

Proof. We give a proof by contradiction. Let A be a square matrix of size n, and
assume that there exist eigenvectors of A, each one corresponding to a different
eigenvalue of A, which are not linearly independent. Since the matrix A has a
finite number (not larger than n) of different eigenvalues, there must exist a minimal

4A matrix of the form (4.9) is called a Jordan block.

|
!
|
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" number of linearly dependent eigenvectors of A with each vector corresponding to a
different eigenvalue. Denote this minimal number by p.

Let.v1, va, ..., vp be p linearly dependent eigenvectors of A corresponding to p
distinct eigenvalues of A denoted be A1, A2, ..., Ap, i.e., such that
civ1 + c2v2 + ... -+ CpUp = 0 (4 10)
with e1, ¢, ..., ¢p constants such that ¢; # 0, for all = 1 : p. By multiplying (4.10)
by the matrix A to the left, we obtain that
c1Avy + cpAvy + ... + CpA’Up = 0. - (411)
Note that
Av; = Nw;, Vi=1:p, (4.12)

since v; is an eigenvector corresponding to the eigenvalue A; of A.
From (4.11) and (4.12), it follows that

ciA1v1 + c2hovz + ... 4 cpAprp = O (4.13)
By multiplying (4.10) by A1, we find that
cidvr + cAv2 + ...+ Ay = Q, / (4.14)
and, by subtracting (4.14) from (4.13), we obtain that

c2(hz2 ~A)vz + ... 4 cp(Ap— Ay = 0. (4.15)

The coefficients of the vectors vs, ..., vp from (4.15) are nonzero, since ¢; #* 0, for

all i = 2 :p, and A; # A1, for all ¢ = 2 : p, since the eigenvalues A1, Az, ..., Ay are
distinct. ,

Thus, we found p — 1 eigenvectors of the matrix A, i.e., va, ..., 2p, each one

corresponding to a different eigenvalue of A, which are linearly dependent. This
contradicts the fact that p denotes the mzmmal number of linearly dependent eigen-
vectors of A.

We conclude that eigenvectors corresponding to different eigenvalues of a matrix
must be linearly independent. . ‘ [

Summary: General properties of eigenvalues and eigenvectors

e A square matrix of size nn has exactly n eigenvalues (possibly complex numbers), if
the eigenvalues are counted with their multiplicities.

A square matrix of size n has at most n linearly independent eigenvectors, but may
have less than n linearly independent eigenvectors.

o There is at least one eigenvector and there are at mast my linearly independent
eigenvectors (and possibly fewer) corresponding to an eigenvalue A with multiplicity
m.

Note that, while the eigenvalues of a matrix with real entries may be complex num-
bers, all the eigenvalues of a symmetric matrix with real entries are real numbers.
Moreover, symmetric matrices have a full set of eigenvectors; see section 5.1 for
details.
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Theorem 4.3. (i) The matriz A is singular if and only if 0 is an eigenvalue of A.

(#i) The matriz A is nonsingular if and only if O is not an eigenvalue of A.
Proof. (i) From (1.75), we find that the matrix A is singular if and only if
Null(4) = {v € R" such that Av=0} # {0},

i.e., if and only if there exists a vector vg # 0 such that Ave = 0, which is equivalent
to saying that O is an eigenvalue of A; see (4.1).

(ii) Since a matrix is nonsingular if and only if the matrix is not singular, it follows
from (i) that a matrix is nonsingular if and only if 0 is not an eigenvalue of A. [

Lemma 4.3. Let A be a nonsingular matriz, and let A™* be the inverse matriz of
A. If (\,v) are an eigenvelue and a corresponding eigenvector of A, then (%,v) are
an eigenvalue and a corresponding eigenvector of AL

Proof. If v # 0 is the eigenvector corresponding to the eigenvalue A of A, then
Av = \v. Multiplying to the left by A™%, we obtain that A™*Av = \(A™*v), and,
using the fact that A™1Av = v since A7 A = I, it follows that

v = A (A7 'v). (4.16)

Note that A # 0, since A is a nonsingular matrix; c¢f. Theorem 4.3. Then, from
(4.16), we find that

1
A7y = Iy,
A
Since v # 0, it follows that & is an eigenvalue of A~"! with corresponding eigenvector
V. O

Lemma 4.4. Let A be a square malriz, and let A and v be an eigenvalue and a
corresponding eigenvector of A.

(i) Let k be a positive integer. Then, AE is an eigenvalue of the matriz A* and v is
a corresponding eigenvector.

(i) Let P(zx) be an arbitrary polynomial. Then, P(\) is an eigenvalue of the matriz
P(A) and v is a corresponding eigenvector.

Proof. (i) We show by induction over the positive integer k > 1 that
ARy = Moy, VE>1. ‘ (4.17)
Formula (4.17) holds for k£ = 1, since A and v are an eigenvalue of A and a

corresponding eigenvector, and therefore Av = dv. Assume that (4.17) holds for k,
i.e., assume that A%y = M*v. Then,

Ay = A (ak) = A(Akv) = A Au = AP = AR,

Thus, formula (4.17) is established for k 4+ 1 and the proof by induction of (4.17) is
complete.
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(i) Let P(z) = P o ckT®, with ¢, # 0, where p = deg(P) is the degree of the
polynomial P(z). Using (4.17), we obtain that

P(Aw = <Xp:ckAk)v = ick (Akv)

k=0 k=0
r Y4

= Ck (Akv> = ck)\k> v
k=0 k=0

= P(A)v.

Thus, P(A)v = P(A)v, and we conclude that P()) is an eigenvalue of the matrix
P(A) and v is a corresponding eigenvector. |

Lemma 4.5. If A is a square matriz, then the matrices A and A* have the same
etgenvalues.

Proof. Recall from Theorem 4.1 that the eigenvalues of a matrix are the roots of
its characteristic polynomial. Thus, the eigenvalues of the matrix A are the roots
of Pa(z) = 'det(zI — A), and the eigenvalues of the matrix A* are the roots of
Pye(z) = det(xl — AY). . '

Since (zI — A)* = I — A*, and using the fact that det((zI — A)¢) = det(x] — A),
see Lemma 10.2, we obtain that

Py(z) det(z] — A) = det((2] — A)") = det(xl — AY)

= PAt (ac)

Thus, the polynomials Pa(t) and P4:(t) have the same roots, and we conclude that
the matrices A and A* have the same eigenvalues. a

Definition 4.5. Let A be a square matriz of size n. The trace of the matriz A is
the sum of its main diagonal entries, i.e.,

tr(A) = > A(i,9). (4.18)

Lemma 4.6. Let A be a square matriz of size n, let Pa(t) be the characteristic
polynomial of A, and let \;, 1 =1 :n, be the eigenvalues of A. Then,

Pa(t) = t" — (A" + .+ (=1)"det(A), (4.19)

and
ixi = tr(A); (4.20)
ﬁxi = det(A). : (4.21)
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Proof. Recall from Lemma 4.1 that

n

[TeE=2) (4.22)

=1

" — (ix) T+ (~1)”ﬁ/\,-. (4.23)

Let t = 0 in (4.22-4.23). Then,

i

det(t] — A)

I}

det(—A) = (~1)"det(4) = (-1)"[] N,

and therefore (4.21) is established.

Note that the only terms of order n—1 from det(¢I—A) are obtained by multiplying
the main diagonal entries of tI — A. In other words, the coefficient of the term ™"
in det(t — A) is the same as the coefficient of the term ™' in [[1,(t — A(4,%)),
which is equal to —~ Y 7| A(3,1) = —tr(A); see Definition 4.5. Then, we conclude
from (4.23) that tr(A4) = > " A O

=1

4.2 Diagonal forms

Definition 4.6. Let A be a square matriz of size n. The matriz A has a diagonal
form if and only if there exists an n X n nonsingular matriz V. and ann X n diagonal
matriz A such that '

A = VAVTL ‘ (4.24)

A matriz that has a diagonal form is called a diagonalizable matriz.

Theorem 4.4. Let A be a diagonalizable matriz, and let A = VAV ™! be the diagonal
form of A. Then, the diagonal entries of the matriz A are the eigenvalues of A and
the columns of the matriz V are the corresponding eigenvectors of A,

More precisely, if A = diag(Ak)k=1:n and V = col(vk),_,.,,, then g, k =1:n,
are the eigenvalues of A, and vy is an eigenvector corresponding to Ak, fork=1:n,
respectively.

Proof. By multiplying A = VAV ™! to the right by V, we obtain that
A=VAV™! <= AV = (VAV YV <= AV = VA, (4.25)

since V™'V = I. Recall from (1.11) and (1.88) that AV = col(Awk),_,,, and
VA = col (\tvr),1.,,- Then, from (4.25), we find that
A=VAVT" & col (Avk)q., = Ol (Metk),q.n
< AUkZ)\k”U}c, Vk:1:n,
i.e., Ag is an eigenvalue of A and vy is a corresponding eigenvector, for k =1 : n.

The vectors vk, kK = 1 : n, are linearly independent vectors since they are the
columns of the nonsingular matrix V. (]



Highlight

Highlight


4.3. DIAGONALLY DOMINANT MATRICES : 123

The result below is an equivalent characterization of diagonalizable matrices and
follows immediately from the proof of Theorem 4.4 above:

Theorem 4.5. A square matriz of size n has a diagonal form if and only if the
matriz has n linearly independent eigenvectors.

Lemma 4.7. Let A be o diagonalizable matriz, and let A = VAV ™! be its diago-
nal form. For every positive integer p, the matriz AP is diagonalizable and has the
following diagonal form:

AP = VAPV . (4.26)

Proof. If p is a positive integer, then

AP = (VAVTH? = (VAVTY) (VAVTY) .. (VAV ) (VAVTY)
= VAVT'WVAVTIV)... (v IV)AVT!
= VAPV, (4.27)
since V7V = I. |

Lemma 4.8. Let A be a nonsingular diagonalizable matriz, and let A= VAV ™! be
its diagonal form. Then, the inverse matriz A™' is also diagonalizable and has the
diagonal form A™' = VATV Y. Moreover, for every positive integer p, the matriz
A7? is diagonalizable and has the following diagonal form:

AP = VATPVTL
Proof. From Lemma 1.7, it follows that
ATV = (vAVTHYTE = (vHTIATIV T = VATV

By definition, if p is a positive integer, then A™? = (AP)~'. Using (4.26), we
obtain that

AP = (AR = (VvAPVTH) T = (vhTtan Tty
= VAPVTL
O
4.3 Diagonally dominant matrices
Let A be an n X n matrix, and denote by
Rj = Y 1AGKI (4.28)

k=1in,k#£j

the sum of the absolute values of all the entries on the j—th row of the matrlx A
except for the main diagonal entry A(4,7).
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Definition 4.7. The n X n matriz A is weakly diagonally dominant if and only if
|[AG DI = Ry, Vi=1:n, (4.29)

where R; is given by (4.28), i.e., if and only if, for every row, the absolute value of
the main diagonal entry from the row is greater than the sum of the absolute values
of all the other entries in that row.

Definition 4.8. The n x n matriz A is strictly diagonally dominant if and only if
|A(G, )] > Ry, Vi=1:mn, (4.30)
where R; is given by (4.28).
Ezample: The N x N matrix
2 =1 ... 0

: e —1
o ... -1 2

is a weakly diagonally dominant matrix, since the only nonzero entries of By are

Bn(j,5) = 2, YVj=1:N;
Bn(j,j—-1) = -1, Vj=2:N;
Bn(j,j+1) = -1, Vi=1:(N-1),

and therefore

Z |BN(1>‘k‘)l ’

IBy(1,2)] = 1 < 2 = |By(1,1)[;

k=2:N

S IBN(NE)| = [BNM(N,N-1)] =1 < 2 = |By(N,N)|;
k=1:(N-1)

> IBNGR) = IBnG— DI+IBNGi+ D] = 2 = |Bn (i),
k=1:N,k#j

forallj =2: (N -2).
Then, from definition 4.7, it follows that By is a weakly diagonally dominant
matrix. O

Theorem 4.6. (Gershgorin’s Theorem.) Let A be a square matriz of size n. For
any eigenvalue A of A, there exists an index j, with 1 < j < n, such that

A—=A@,5)] < Ry (4.31)
where R; is given by (4.28). '

Note that Gershgorin’s Theorem can also be stated as follows:
M4 © DG R,
j=1

where A(A) is the set of all the eigenvalues of A and D(a, R) = {z € C such that |z —
al < R} is the disc of center ¢ € C and radius R > 0 in the complex space.




4.3. DIAGONALLY DOMINANT MATRICES . 125

‘ Proof. Let A be an eigenvalue of A, and let v be a corresponding eigenvector. Let'j
be the index of the largest entry of v in absolute value, i.e., such that

lvj| = max |vg|. (4.32)
Then,
o] < vil, Yhe=1:n (4.33)
Since Av = A, it follows that
> A(, ke = Mvs, Vi=1:n. (4.34)
k=1

By letting ¢ = j in (4.34), where j is the index of the largest entry of v in absolute
value, see (4.32), we find that

My = D AG ke = AG v + Y AU k),
k=1

k=1:nk#j

and therefore

A=AGNwv = D A( k). (4.35)

k=lin,k#j

By taking absolute values in (4.35) and dividing by |v;], we obtain, using the notation
from (4.28), that

|Cctimis AG RO S AG K)ol

|A_A(‘77.7)| = |'vjl = I,Ujl
) v
— S aG R
k=1:n,k#j 11)]1
< 0 lAGR)
k=1:n,k#j
= Rj,
since lﬁﬁl < 1; cf. (4.33). O

Gershgorin’s Theorem can be used to derive useful properties of diagonally dom-
inant matrices, see Theorem 4.7 and Theorem 5.7.

Theorem 4.7. Any strictly diagonally dominant matriz is nonsingular.

Proof. Let A be an eigenvalue of A. From Gershgorin’s Theorem, it follows that there
exists 7, with 1 < j < n, such that

|A(G,J) = Al < Ry (4.36)

cf. (4.31), and using the fact that |\ — A(4,7)| = |A(4,7) — A|l. Note that |a] — |b| <
|a — b|, for any a,b € C. Then,

|AG, D = Al < AG,5) — Al (4.37)
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From (4.36) and (4.37), it follows that
A, = Al < Ry,

and therefore
Al > JAG, ) - R; > 0,

since A is a strictly diagonally dominant matrix; cf. (4.30).
Thus, |A] > 0, and therefore A # 0. We conclude that any eigenvalue of the matrix
A is nonzero, and therefore that the matrix A is nonsingular; cf. Theorem 4.3. O

Note that, although less frequently used in practice, column-based versions of
Gershgorin’s Theorem and of Theorem 4.7 also hold, and are based on the fact that
a square matrix and its transpose have the same eigenvalues; see Lemma 4.5. We
only provide a version of Theorem 4.7 here; see Theorem 4.8.

Definition 4.9. The n X n matriz A is strictly column diagonally dominant if and A

only if
AR > D> JAGR)I, YE=1:n, (4.38)
j=Lin,j#k
i.e., if and only if, for every column, the absolute value of the main diagonal entry

from the column is strictly greater than the sum of the absolute values of all the other
entries in that column.

Note that, unless otherwise specified, diagonal dominance will refer to the “row”

diagonal dominance introduced in Definitions 4.7 and 4.8.

Lemma 4.9. If A is a strictly column diagonally dominant matriz, then its transpose
At is a strictly diagonally dominant matriz.

Proof. Let A be astrictly column diagonally dominant matrix. From (4.38), it follows
that
Ak, k)| > > AR, (4.39)
j=Llin,j#k
for all £k =1 : n. By switching the indices j and & in the inequality (4.38), we find
that
AGHI > > AR, (4.40)
k=1ln,k#£5 .
for all j =1 :n. Note that

Yo lAERD = D0 1AGK), (4.41)

k=1n,k#j k=1:n,k#j

since, by definition, A*(j, k) = A(k, j) for all 1 < j,k < n. Since A(4,5) = A*(4,5), it
follows from (4.40) and (4.41) that

A Gl > D AR

k=1in,k#j

Then, from Definition 4.8, we find that the matrix A? is strictly diagonally dominant.
O
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Theorem 4.8. Any strictly column diagonally dominant matriz is nonsingular.

Proof. Let A be a strictly column diagonally dominant matrix. From Lemma, 4.9,
it follows that the matrix A® is strictly diagonally dominant. Thus, the matrix A°®
is nonsingular, see Theorem 4.7, and therefore 0 is not an eigenvalue of A*. Since
A and A* have the same eigenvalues, see Lemma 4.5, we conclude that 0 is not an
eigenvalue of A, and therefore that A is a nonsingular matrix. O

Ezample: Show that the following matrices are nonsingular:

3 1 -1 0
2 -4 1 0.5

A = -2 1 5 05
0 2 0 =25
) -4 3 -1 1
A = -1 -5 1 4

1 -1 3 0
05 0 05 -6

Answer: (1) The matrix A; is strictly diagonally dominant, since, for every row of
A1, the absolute value of the main diagonal entry from the row is greater than the
sum of the absolute values of all the other entries in that row:

3 > 14+|-1=2
|—4=4 > 241+05=35
5 > |—2/4+1+0.5=35
|—2.5|=25 > 2

Then, from Theorem 4.7, it follows that A; is a nonsingular matrix.

(ii) The matrix Az is strictly column diagonally dominant, since, for every column
of the matrix Az, the absolute value of the main diagonal entry from the column is
strictly greater than the sum of the absolute values of all the other entries in that
column:

|—4/=4 > |—1/+1+05=25
|—5/=5 > 3+4|—1=4

3 > |—1+1+05=25
|-6l=6 > 1-4+4=5.

Then, from Theorem 4.8, it follows that As is a nonsingular matrix.
Note that Theorem 4.7 cannot be used to show that the matrix As is nonsingular,
since Az is not strictly diagonally dominant: for the first row of Az, we find that

|—4/=4 < 3+|-14+1=5 DO
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4.4 Numerical computation of eigenvalues

Computing the eigenvalues of a matrix is a fundamental numerical linear algebra
problem, which further highlights the difference between numerical linear algebra
and classical linear algebra. For example, computing the roots of the characteristic
polynomial of a matrix to obtain its eigenvalues would be inefficient and prone to
large errors since polynomial root computation is an ill-conditioned problem.

The methods used in practice for computing eigenvalues are iterative methods
that find approximations of the eigenvalues of the matrix to desired tolerance. The
simplest such method is the Power Method which works best for symmetric positive
definite matrices whose largest eigenvalue has multiplicity 1, and the related Inverse
Power Method and Inverse Power Method with shifts. These methods are generally
slowly convergent.

Efficient eigenvalue algorithms are variants of the QR Algorithm, which was named

one of the top ten algorithms of the 20-th century.® Based on the QR decomposition .

of a matrix as the product of an orthogonal matrix Q and an upper triangular matrix
R, the matrix A is iteratively transformed into A; = QR and then A;+1 = RQ, until
convergence to an upper triangular matrix (or to a diagonal matrix, if the matrix A
is symmetric) is achieved. More details on QR algorithms and their implementations
can be found, e.g., in Demmel [13] and in Trefethen and Bau [43].

4.5 Eigenvalues and eigenvectors of tridiagonal
symmetric matrices

Let
2 -1 ... 0
-1 e
By = (4.42)
-
o ... -1 2
be the N x N tridiagonal symmetric matrix whose only nonzero entries are
Bn(i,4) = 2, Vi=1:N;
By(i,i—1) = =1, Vi=2:N;
Bn(ii+1) = —1, Vi=1:(N-1).

The matrix By appears often in practical applications, e.g., in the finite difference
solution of second order differential equations.

In this section, we find the eigenvalues and eigenvectors of the matrix By, and
then use them to compute the eigenvalues and eigenvectors of tridiagonal symmetric
matrices having the more general form (4.49). Note that, since the matrix By is
symmetric, all its eigenvalues are real numbers; cf. Theorem 5.1.

Lemma 4.10. The matriz By has the following N different eigenvalues:

iw .
Wy = 2(1—COS(N+1>), for j=1:N. (4.43)
5See Cipra [10] at http://www.siam.org/pdf/news/637.pdf

i
{
i
i
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" For everyj = 1: N, the eigenvalue ju; has o corresponding N x 1 eigenvector v; with
the following entries:

. . i . :
: = =1:N. 4.44
v;(2) 51n<N+1>, Vi=1:N (4.44)

Proof. We will show that
Byv; = pjv;, Vji=1:N. (4.45)

Since the N x N matrix By has exactly N eigenvalues, counted with their multi-
plicities, see Theorem 4.2, we can then conclude from (4.45) that p;, j=1: N, are
all the eigenvalues of By, and v, j = 1: N, are all the eigenvectors of By.

Let 2 <{< N — 1. Note that

(Brnoj)(3) = 2v;5(3) —v; (i — 1) —v;(i + 1),

which, using (4.44), can be written as

N o ijmw o (G=DgmN i+ Djm
(Byvj)(i) = 2sin <N n 1) sin (——————N ) ) sin (———-——————N 1) (4.46)
foralli=2: (N —1). K ‘
If we let 2 = 1 in the right hand side of (4.46), we find that

2sin (NJ—I—:> — sin (%—%) —sin(0) = 2v;(1) —v;(2)
. = (BN'Uj)(l), (4.47)

since sin(0) = 0. .
For i = N in the right hand side of (4.46), we find that

2sin <NNT1) — sin (%) —sin(jr) = 2v;(N)—v;(N —1)

= (Bwnv;)(N), (4.48)

since sin(jn) = 0 for any integer j.
From (4.47) and (4.48), we conclude that formula (4.46) also holds for ¢ = 1 and
1 = N, and therefore

(Buv)(i) = 2sin (A;]—:_“J ~ sin (%) ~ sin (%—41:)?11) Vi=1:N.

Then,

(Byvj)(s) = 2sin'

_ . yr o jw . ijm jm
(sm(N+1 N+1)+SIH(N+ + +1)>
.. -
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for the second equality above we used the fact that

sin(z —y) +sin(z +y) = 2sin(z) cos(y)

with © = 1\1,’:1 and y = ——J—J’;—l
‘We conclude that
BN'Uj = KjVj, V] =1 ‘1,
which is what we wanted to show; cf. (4.45). d

Let Ty be the N x N tridiagonal symmetric matrix given by

d —-a ... 0

™w=| % . (4.49) .
. .. ... _a
0 i d

Note that, for d = 2 and a = 1, it follows that Ty = By cf. (4.42).
Lemma 4.11. The matriz Tx has the following N different eigenvalues:

A o= d 2acos(N+1>, Jorj=1:N. (4.50)

For every j = 1 : N, the eigenvalue A; has a corresponding N X 1 eigenvector v;
with the following entries:

N ks .
v (1) = sm<N+1), Vi=1:N. (4.51)
Proof. Note that
d—2a 0 ... 0 2 —a ... O
TN — 0 + ~‘a
: . ‘. 0 : —Q
0 .. 0 d-2a 0 ... —a 2a

= (d—2a)] + aBw.

Let 1; and u; be an eigenvalue and a corresponding eigenvector of By given by
(4.43) and by (4.44), respectively. Then, Byv; = u v, and therefore
Tyv; = ((d - 2a)I -+ dBN)’l)j
= (d~2a)v; + ap;v;
(d —2a + apy)v;.
In other words,
A; = d—2a-+ap; (4.52)

is an eigenvalue of Ty with corresponding eigenvector v;.
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Recall from (4.43) that the matrix By has the following N eigenvalues:

i = 2~2cos(Nj:1>, for j=1:N.

Then, from (4.52), it follows that

Aj = d—2a+ap; = d—al2—py)

- 4 mJ
= d 2acos(N+1). _ (4.53)

We conclude that, for j = 1: N, A; given by (4.53) are eigenvalues of the matrix
T with corresponding eigenvectors v; given by (4.44).

The N x N matrix has exactly N eigenvalues, counted with their multiplicities;
cf. Theorem 4.2. We conclude that A;, j = 1: N, are all the eigenvalues of Ty. [

4.6 References

For an overview of numerical eigenvalue methods, see the monograph by Saad [34].
The QR algorithm and practical implementation details, including the Hessenberg
reduction and tridiagonal and bidiagonal reduction, can be found in Demmel [13]
and in Trefethen and Bau [43].

The general form of Gershgorin’s theorem states that, if the union of k¥ Gershgorin
disks are disjoint from the other Gershgorin disks, then exactly k of the eigenvalues of
the matrix are in the union of those k Gershgorin disks. This version of Gershgorin’s
theorem and extensions of it can be found in Varga [44].

The matrix
2 -1 ... 0

: i =1
o ... -1 2

appears in the finite difference discretization of the one dimensional Poisson equation.
It has many interesting properties, which have a special symmetry about them; details
can be found in the section “My Favorite Matrix” from Gil Strang’s “Essays in Linear
Algebra” [42)].

An elegant complex analysis proof of the Fundamental Theorem of Algebra (which
was used to show that an n X n matrix has exactly n eigenvalues, when counted with
their multiplicities) is included, with detailed historical notes, Lax and Zalcman [27].
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4.7 Exercises

1.

Let A and B be square matrices of the same size. Show that, if v is an eigenvec-
tor of both A and B, then v is also an eigenvector of the matrix M = ¢1 A+ c2B,
where c1 and ¢a are constants. What is the eigenvalue of M corresponding to
the eigenvector v?

. Let A and v be an eigenvalue and the corresponding eigenvector of the matrix

A. Let d be a constant number, and let I be the identity matrix.

(i) Show that v is an eigenvector of the matrix B = dI + A + A%, and find the
corresponding eigenvalue.

(ii) If A is a nonsingular matrix, show that v is an eigenvector of the matrix
M =dI + A+ A™!, and find the corresponding eigenvalue.

. Let A be a 3 x 3 nonsingular matrix with eigenvalues —2, 1, and 3. What are

the eigenvalues of A% + 2T —3A™'?

. (i) Show that the eigenvalues of the matrix

8§ —18 -30 -24
18 37 —60 —48

A=1 9 153 2
0 0 0 -1
are —1, with multiplicity 3, and 2, with multiplicity 1.
0 2 2
Show that % , _23 , (1) are three linearly independent eigen-
-2 3 0

vectors corresponding to the eigenvalue —1, and show that there exists only one
linearly independent eigenvector of the matrix A corresponding to the eigen-

value 2, e.g., _:21

0

(ii) Show that the eigenvalues of the matrix

10 =20 -32 -26
18 41 -68 -—54

—-14 19 26 23
7 1 9 4

B =

are —1, with multiplicity 3, and 2, with multiblicity 1.

Show that there exists only one linearly independent eigenvector of the matrix

0 1
B corresponding to the eigenvalue —1, e.g., :i , and show that __21
2 0

is an eigenvector corresponding to the eigenvalue 2.
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5.

10.

2 =1
Let A= ( 1 4 )
(i) What is the characteristic polynomial of A?

(ii) Find the eigenvalues and the eigenvectors of A.

. (i) Find the eigenvalues and the eigenvectors of the lower triangular matrix

2 0 0
L = 1 -3 0
-1 2 -1

(ii) Find the eigenvalues and the eigenvectors of the upper triangular matrix

-2 -1 3
U = 0 1 2
0 0 3

. Let A be a square matrix such that A*> = A. Show that any cigenvalue of A is

either 0 or 1.

Note: A matrix A with the property that A*> = A is called an idempotent
matrix.

. Let A be a square matrix with the property that there exists a positive integer

p such that AP = 0. Show that any eigenvalue of A must be equal to 0.

Note: A matrix A with the ploperty that AP = 0 for a positive integer p is
called a nilpotent matrix.

. Let v # 0 be a column vector of size n, and let A = vvt be an n X n matrix.

(i) Show that the matrix A has exactly one non-zero eigenvalue.

(ii) Find the eigenvalues and the eigenvectors of A.

Find the eigenvalues and the eigenvectors of the n x n matrix

d 1 ... 1
1 d .1
11 d

where d € R is a constant.
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11.

12.

13.

14.

15.
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Hint: Note that

d 1 ... 1 1 1 ... 1
1 4 ... 1 1 1 1
e = (d-DI + )

11 ... 4 11 1

= (d—1DI + 1-1°%,

1
1
where I is the identity matrix and 1 =

(i) Let A be a symmetric matrix of size n, and let A\;, ¢ = 1 : n, be the ~

eigenvalues of A, with corresponding eigenvectors v;, ¢ = 1 : n. What are the
eigenvalues and the eigenvectors of A*?

(i) Let A be a symmetric matrix of size n. Let ¢, ¢ = 1 : n, be the eigenvalues
of the matrix A%, with corresponding eigenvectors w;, 4 = 1 : . What can you
say about the eigenvalues and the eigenvectors of A?

Let A be a square matrix of size n, and let S be a nonsingular matrix of size n.

(i) Let A and v be an eigenvalue and the corresponding eigenvector of A. Show
that A is also an eigenvalue of the matrix S™'AS. What is the corresponding
eigenvector?

(ii) Show that the matrix S™'AS has the same characteristic polynomial as 4,
i.e., show that
PS_lAS(t) = PA(t), Vt (S R.

Let A be a square matrix with real entries. If A = a+ibisa complex eigenvalue
of A (i.e., with b # 0), show that A = a — b, the complex conjugate of }, is
also an eigenvalue of A.

The 2 X 2 matrix A has eigenvalues 1 and —2 with corresponding eigenvectors

(_21)and(i’).lfv:(f?)),ﬁndAv.
12
LetA:( 9 2).

(i) Find the eigenvalues and the eigenvectors of the matrix A.

(ii) What is the diagonal form of A?

(iii) Compute A'2.
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16.

17.

18.

19.

LetA:(i Z)bea2x2matrix,andlet

Pa(t) | = t* — (a+d)t + (ad — bc)

be the characteristic polynomial associated to A.
Show that P4(A) = 0, i.e., show that

A? —(a+ d)A+ (ad — bc)I = 0.
Note: This is the 2 X 2 case of the Cayley-Hamilton theorem which states that
P4(A) = 0 for any square matrix A.

Let A and B be square matrices of the same size.

(i) If A is nonsingular, show that the matrices AB and BA have the same
characteristic polynomial, i.e., show that

det(t] — AB) = det(t] — BA).
(ii) Show that the characteristic polynomial of AB is the same as the charac-
teristic polynomial of BA even if A is a singular matrix.

Hint: If A is a singular matrix, it is possible to find a number ¢ > 0 as small
as needed such that the matrix A 4+ €l is nonsingular.

(iii) Show that the matrices AB and BA have the same eigenvalues.

(i) Let A and B be square matrices of the same size. Show that the traces of
the matrices AB and BA are equal, i.e., show that tr(AB) = tr(BA).

(ii) Show that you cannot find two n x n matrices A and B such that
AB—-BA = 1,

where I is the n x n identity matrix.

Recall that the matrix
By, =

has four eigenvectors vi, vz, v3, v4 given by
w(i):sin(%), Vi=1:4,

forj=1:4.

Are the vectors v1, va, vs, and v4 orthogonal and of norm 17
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3
20. Show that the matrix | 0 2 2 is a weakly diagonally dominant sin-
0

gular matrix.

21. Show that the matrix

-5 -1 025 -1
2 4 -1 3
05 -2 3 -1
1 05 0 -6

is nonsingular.

22. Let A be an n X n matrix. For every 7 =1 :n, let
Ri = > 1AGK),
k=lin,k#j
and denote by Dj; the disc of center A(4,7) and radius R;, i.e.,
D; = {z € Csuch that |z — A(4,5)| < R; };
note that D; is called a Gershgorin disk corresponding to the matrix A.

A more general form of Gershgorin’s theorem states that, if a Gershgorin disk
D; is disjoint from the union of the other n — 1 Gershgorin disks of A, then
exactly one eigenvalue of the matrix A is in the disk D;. '

Use this result to show that all the eigenvalues of the matrix

—4 1 0 -05
0 0.1 0 -02
1 2 5 -1

025 -0.15 01 -1

are real numbers.

23. Show that all the eigenvalues of the matrix

2 0.0012  —0.0003 0.0015
—0.0002 -1.25 0.0010  —0.0001
0 0.0016 3 0.0009

—0.0011 —0.0008 —0.0002 -2.5

are real numbers, and find estimates for the values of the eigenvalues of the
matrix with 0.005 accuracy.

24. Let A be an n x n matrix given by

A(i,4) = 2, Vi=1:m
A(G,i—1) = 1, Vi=2:m;
A(j, k) = 0, otherwise.

Find the eigenvalues and the eigenvectors of A.
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25. Let J be an n X n matrix given by

A(44) = a, Yi=1:m;
AGi+1) = b Vi=1:(n—1);
A(j,k) = 0, otherwise,

where a,b € R are constants. Find the eigenvalues and the eigenvectors of J.

Note: The matrix J is called a Jordan block if b = 1.

26. The 2—norm of a symmetric matrix A is given by

[|Al]2 = _ max IAl (4.54)
A eigenvalue of 4
i.e., ||Al|2 is equal to the largest absolute value of all the eigenvalues of A.

The Forward Euler finite difference discretization of the heat PDE is convergent
if and only if ||An||2 < 1 for all N > 2, where Ay is the N X N matrix given
by

1-20 —a ... 0

An = e

. T . —o
0 . o—a 1—-2«

with « > 0 a positive constant.
Show that ||An|l2 <1forall N >2ifand only if 0 < <

N

Hint: Recall from Lemma 4.11 that the matrix

d ~a ... 0O

w = | ¢
S
0 —-a d

has the following N different eigenvalues:

i )
R for =1:N.
Aj d 2ac0s(N+1), or j N

27. The Backward Euler finite difference discretization of the heat PDE is conver-
gent if and only if |JAx'l]2 < 1 for all N > 2, where

142 « ... 0

«

0 .o 14 2x
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with a > 0 a positive constant.
Show that ||Ax'||2 < 1 for all N > 2 for any a > 0.

Hint: Use (4.54) to show that, if A is a symmetric matrix, then

ATl = 1/( min [A])-

A eigenvalue of 4

|
|
|




Chapter 5

Symmetric matrices and symmetric positive
definite matrices

Symmetric matrices. Real eigenvalues of symmetric matrices. Orthogonality of the
eigenvectors of symmetric matrices.

Symmetric positive definite matrices and symmetric positive semidefinite matrices.
Positive definiteness criteria for symmetric matrices. Sylvester’s criterion.
Diagonal dominant symmetric positive definite matrices.

The diagonal form of symmetric matrices.

5.1 Symmetric matrices

Definition 5.1. A symmetric matriz is o matriz with real entries that is equal to
its transpose matrix. In other words, an n X n matriz A is symmetric if and only if
A=A ie,

Il

A3, k) Alk,j), V1<j#k<n (5.1)
Ezamples: (i) Let M be an n x n square matrix. The matrix A = M + M* is a
symmetric matrix, since (M")" = M,.see (1.19), and therefore

A = M+ MY = M+ (MY = M+ M = A

(ii) Let M be an m x n matrix. The matrix A = M'M is a symmetric matrix,’ since

A = (M*M) = MY(MY = M'M = A. O

Recall from Theorem 4.2 that an n X n matrix with real entries has n eigenvalues,
counted with their multiplicities, but these eigenvalues may be complex numbers.
However, all the eigenvalues of a symmetric matriz with real entries are real numbers;
see Theorem 5.1. ‘

Moreover, recall from Lemma 4.2 that eigenvectors corresponding to different
eigenvalues are linearly independent. For symmetric matrices, such eigenvectors are
orthogonal; see Theorem 5.3. To state these results formally and prove them, we
begin by introducing the concepts of inner product aﬁc} orthogonality.

IMoreover, M*M is a symmetric positive semidefinite matrix; cf. Lemma 5.2.

139 -
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Definition 5.2. Let u = (u;)im1.n and v = (Va)i=1:n be column vectors of size n,
with ui,v; € R, fori=1:n. The inner product of u and v is

(u,v) = v, (5.2)

which can be written ezplicitly as
n
(u, 1)) = UIV1 + U2V2 + ...+ UnVUp = Zuzvz (53)
=1

Note that v'u = 37| usv; = u'v, see ( 1.5), and therefore
(w,v) = v'u = uly = (v,u), Vu,veR™ (5.4)

The inner product. (-, -) from (5.2) is bilinear; in particular, note that

(ur +uz,v) = (u,v)+ (u2,v), Vui,us,veR (5.5)
(wvi+wv) = (u,v1)+ (u, v2), Vu,v1,v2 € R™; (5.6)
(cu,v) = (u,e0) = clu,v), Yu,ove R™, ce R. (5.7)

Definition 5.3. The norm of a vector v € R™ is defined as [|v|| = \/(v,v) = Vvto.

Ifv=(v:)s=1:n, then
E = o) = w0 = S0t -

i=1
The inner product from'(5.2) and the norm from (5.8) are also called the Euclidean

inner product and the Euclidean norm of a vector, respectively.

Theorem 5.1. Any eigenvalue of a symmetric matriz is a real number.

Proof. An elegant proof of Theorem 5.1 involves an extension of the Euclidean inner
product (5.2) to complex numbers and can be found in section 10.4. O

Lemma 5.1. Let A be an m x n matriz, and let B be an n X m matriz. Let v and
v be column vectors of size n and m, respectively. Then,

(Au,v) = (u, Atv); (5.9)
(u,Bv) = (B'u,v). (5.10)

Proof. Recall from (1.21) that (Bv)' = v'B* and (Atv)t = v4(AY! = v’A, since

(A") = A4; cf. (1.19). Then, using (6.2), we find that

(Au,v) = v'Au = (WA = (A%)'u = (u, A*);
(u,Bv) = (Bv)'u = o'Bly = v (Bu) = (B'u,v).
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" Definition 5.4. Two wectors of the same size qre orthogonal if and only if their
inner product is equal to 0. In other words, the vectors u and v gre orthogonal if and
only if ) '

(w,v) = v'u = 0,

o7, equivalently, if and only if
(vu) = vlv = 0
see (5.4).

Definition 5.5, 4 square matriz is orthogonal if and only if any two different
columns of the matriz are orthogonal and the norm of every column is equal to 1.

Theorem 5.2. A square matriz is orthogonal if and only if its transpose matriz is
also its inverse matriz. In other words, the matriz Q is orthogonal if and only if

Q'Q = Q@' =1, (5.11)
i.e., if and only if Q* = Q1.

Proof. The proof of Theorem 5.2 can be found in section 10.1.3; see Theorem 10.2.
(]

Theorem 5.3. Eigenvectors corresponding to different eigenvalues of a symmetric
matriz are orthogonal.

Proof. Let A be a symmetric matrix, and let A1 # Az be two different eigenvalues of
A with corresponding eigenvectors v, and v, Then,

Avi = Mv; and Avy = Aguy, (5.12)

and, using (5.7), we obtain that
(Avi,va) = (Mv1,ve) = A1 (v1,v2) (5.13)
(v1, Avg) = (vl,)\zvz) = Az2(vi, v2). (5.14)

Note that, since the matrix A is symmetric and therefore At = A, it follows from
(5.9) that
(A’U1,1)2) = (’Ul,Atvz) = (1)1,141}2). (5.15)

Then, from (5.15) and using (5.13) and (5.14), we obtain that
)\1(’1)1,’[}2) = /\2(’1)1,1)2).

Thus, (A1 — A2) (v1,v2) = 0, and, since A1 # )z, we conclude that (v1,v2) = 0, i.e.,
the eigenvectors v1 and vy are orthogonal. [

Theorem 5.4. Any symmetric matriz is diagonalizable.
More precisely, if A is g symmetric matriz, then there exists an orthogonal matriz
Q and o diagonal matriz A such that®

A = QAQ. (5.16)
2The transpose of an orthogonal matrix is also the inverse of the orthogonal matrix, i.e.,

Qt = Q7% see Theorem 5.2. Then, from (5.16), it follows that A= QAQt = QAQ™!, which is
the diagonal form of A.
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Note that, from Theorem 4.4, it follows that the diagonal entries of the matriz A are
the eigenvalues of the matriz A and the columns of the matriz Q are the corresponding
eigenvectors of A.

Proof. A proof of this result can be found in Section 5.3; see Theorem 5.9. O

Theorem 5.5. Any symmetric matriz of size n has o full set of n orthogonal eigen-
vectors.

Proof. Let A be a symmetric matrix of size n. From Theorem 5.4, it follows that
the matrix A has a diagonal form A = QAQ", where Q = col (vk),_,,, isann x n
orthogonal matrix and A = diag(Mx)k=1.» is a diagonal matrix of size n. Then,
from Theorem 4.4, we obtain that vk, k = 1 : n, are n orthogonal eigenvectors of A
corresponding to the eigenvalues Ax, k = 1 : n, of A, respectively. O

5.2 Symmetric positive definite matrices

Many matrices occurring in practical applications, e.g., when computing covariance
and correlation matrices or for least squares solutions are symmetric positive definite
or symmetric positive semidefinite; cf. Chapter 7 and Chapter 8. In this section, we
present several equivalent properties of such matrices.

Definition 5.6. Let A be a symmetric matriz of size n. The matriz A is symmetric
positive definite (spd) if and only if 8

ztAr > 0, Ve €R®, z+#£0. (5.17)
An equivalent way to state condition (5.17) is as follows:
Az > 0,V €R” and 2'Az=0 < z=0. (5.18)

Note that x* Az is @ number, since it is the product of a row vector, a matrix, and
a column vector; see also Section 10.1.4.

Definition 5.7. Let A be a symmetric matriz of size n. The matriz A is symmetric
positive semidefinite (spsd) if and only if

z'Ax > 0, VazeR"™ (5.19)

Definition 5.8. Let A be a symmelric matriz of size n. The matriz A is negalive
definite if and only if the matriz —A is symmetric positive definite, i.e.,

2'Ax < 0, Yz e€R™ z#£0.
The matriz A is negative semidefinite if and only if the matrix —A is symmetric

positive semidefinite, i.e.,
z'Az < 0, VzeR™

3Note that z'Az is the quadratic form corresponding to matrix A; see section 10.1.4 for
properties of quadratic forms.
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Lemma 5.2. Let M be an m X n matriz.
(i) The matriz M'M is an n x n symmelric positive semidefinite matriz.

(it) The matric M*M is symmelric positive definite if and only if the columns of M
are linearly independent.

Proof. Note that the matrix M*M is symmetric, since
(M*M)Y' = M'(MY* = M'M.
(i) Let £ = (@:)i=1.n be a column vector in R”. Then,
' M'Mz = (Mz)'Mz = (Mz,Mz) = ||Mz|* (5.20)
Since [|Mz||?> > 0, it follows from (5.20) that
e M'Mx > 0, VzeR”, (5.21)

and therefore that the matrix M‘M is symmetric positive semidefinite; cf. Defini-
tion 5.6.

(ii) Let M = col (mx)g_y.,- From (5.20), it follows that

MMz =0 <= [|Mz]’=0 < Mz=0 <> » azpmp=0,
k=1

where the matrix—vector multiplication formula (1.7) was used for the last equiva-
lence.

Thus, there exists a vector z # 0 such that z*M* Mz = 0 if and only if the columns
of the matrix M are not linearly independent. Since z*M*Mz > 0 for all z € R™, see
(5.21), we conclude from Definition 5.6 that the matrix M*M is symmetric positive
definite if and only if the columns of M are linearly independent. ]

Note that symmetric positive semidefinite matrices of the from M®M appear of-
ten in practical applications such as finding covariance matrices from time series
data, solving least square problems, and doing linear regression; see Chapter 7 and
Chapter 8.

Example: Show that the N x N matrix

2 -1 ... 0
-1

is symmetric positive definite.

A necessary (but not sufficient) condition for the m X n matrix M to have linearly independent
columns is that it cannot have more columns than rows, i.e., n < m..

5 Another proof of this fact can be given using the fact that a matrix is symmetric positive
definite if and only if all its eigenvalues are positive; see Theorem 5.6 and the example thereafter.


Highlight

Highlight


144 CHAPTER 5. SYMMETRIC MATRICES. SPD MATRICES.

Solution: Recall from (10.20) that

' Bvz = Y Bn(j,k)zz,
1<5,k<N

and therefore

N N N-1
z'Byz = ZQ.Z‘? - Zmz’—lmi - Z TiTi41
im1 =2 i=1
N N-1
= 22:12? - 2 Z LiLi41
i=1 i=1
N—1 N—1 N-1
= HI%—F ZUU?H-‘F Zﬂif-l-w%v — 22$i$i+1
i=1 i=1 i=1
N-1 '
= i + (#F — 2mimigr +3541) + TH
i=1
N1
= af + (i — Tin1)® + 2
i=1
> 0, VzeRY
Moreover,
N—1
z'Byz =0 3 + Z(:}:Z —zip1)? + 2 =0
i=1

<
= z1=0;anv=0; z; = 3441, Vi=1:(N-1)
— z;=0, Vi=1:N

= z=0

We conclude that z*Byz > 0 for all z € RY, & # 0, and therefore that By is a’

symmetric positive definite matrix; cf. (5.17). 0O

Several equivalent ways to characterize symmetric positive matrices are presented
below. A summary of these conditions and comments on their practical applicability
can be found in Section 5.2.2.

Theorem 5.6. (i) A symmetric matriz is symmetric positive semidefinite if and
only if all the eigenvalues of the matriz are greater than or equal to zero.

(ii) A symmetric matriz is symmetric positive definite if and only if all the eigenvalues
of the matriz are strictly greater than zero.

Proof. Let A be a symmetric matrix of size n. Recall from Theorem 5.5 that any
symmetric matrix of size n has a full set of n orthogonal eigenvectors. Let v1, va,
..., U be n orthogonal eigenvectors of A of norm 1, and let Ay, Az, ..., An be the
corresponding eigenvalues. If Q = col (V&);_y.,, and A = diag(Ax)k=1., the diagonal
form of A is

A = QAQ', (5.22)
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“where Q is an orthogonal matrix; cf. Theorem 5.4. Let z € R™. From (5.22), it
follows that

' Az = xtQAth = (Qtw)tA(Qt:B) = y'Ay, - (5.23)
where y = Q'z. If y = (¥:)i=1.n, We find from (5.23) that

oAz = y'Ay = > i (5.24)
i=1

‘We now prove each part of the theorem by double implication.

(i) “If A is a symmetric positive semidefinite matrix, then all the eigenvalues of A
are greater than or equal to zero.”

Assume that there exists an eigenvalue ); of A such that A; < 0, and let w; # 0 be
an eigenvector corresponding to A;. Then, Aw; = Ajw; and

wiAw; = widjw;) = N wiw; = Mllwsl|* < 0,

since A; < 0 and w; # 0. This contradicts the property (5.19) of a positive semidefi-
nite matrix. ‘

We conclude that, if A is symmetric positive semidefinite, then all its eigenvalues
must be greater than or equal to zero.

(i) “If all the eigenvalues of A are greater than or equal to zero, then A is a symmetric
positive semidefinite matrix.” ‘

Assume that A; > 0, foralli=1:n. Let ¢ € R" and let y = Q'z. y = (%:)iz1mn,
it follows from (5.24) that

wtAz = y'Ay = Z)\lyf (5.25)
i=1

Since A; > 0 for all i = 1 : n, it follows from (5.25) that z*Az > 0 for any = € R”,
and, from Definition 5.7, we conclude that A is a symmetric positive semidefinite
matrix.

(ii) “If A is a symmetric positive definite matrix, then all the eigenvalues of A are
strictly greater than zero.”

Assume that there exists an eigenvalue A; of A such that A; <0, and let w; # 0 be
an eigenvector corresponding to A;. Then, Aw; = Ajw; and

wiAw; = wi\w;) = A -wiw; = Nlwl|* < 0

since A; < 0. This contradicts the property (5.17) of a positive definite matrix, since
wj % 0.

We conclude that, if the matrix A is symmetric positive definite, then all its
eigenvalues must be strictly greater than zero.

(i) “If all the eigenvalues of A are strictly greater than zero, then A is a symmetric
positive definite matrix.”
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Assume that X; > 0, forall i = 1:n. Let € R” and let y = Q. Iy = (¥i)i=1:n,
it follows from (5.24) that

2t Az = ytAy = Zkiyf > 0. ] (5.26)
=1

Since A; > 0 for all ¢ = 1 : n, it follows from (5.26) that z*Az = 0 if and only if
y; = 0 for all ¢ = 1 : n, i.e., if and only if y = 0. Recall that y = Q'x, where @ is an
orthogonal matrix. Thus,

Az =0 <= y=0 <= Qz=0 &= QQ'z)=0 < z=0,

since @ is a nonsingular matrix and QQ* = I; see (5.11).
We conclude that 2* Az > 0 for any = # 0, and, from (5.17) of Definition 5.6, it
follows that A is a symmetric positive definite matrix. O

The following result is a simple consequence of Theorem 5.6:

Lemma 5.3. Any symmetric positive definite matriz is nonsingular.

Proof. Let A be a symmetric positive definite matrix. From Theorem 5.6, we ob-
tain that all the eigenvalues of A are strictly greater than zero. Thus, 0 is not an
eigenvalue of the matrix A, and, from Theorem 4.3, we conclude that the matrix A
is nonsingular. (|

Lemma 5.4. The inverse of a symmetric positive definite matriz is also symmetric
positive definite.

Proof. Let A be a symmetric positive definite matrix. Recall from Lemma 5.3 that -
the matrix A is nonsingular, and let A~! be the inverse matrix of A. From Lemma 4.3,
it follows that, if 4 is an eigenvalue of A, then % is an eigenvalue of A™'. Note that
all the eigenvalues of A are strictly greater than zero, since A is symmetric positive
definite; cf. Theorem 5.6. Then, v > 0, and therefore % > 0.

In other words, all the eigenvalues of the symmetric matrix A" are positive, and,

from Theorem 5.6, we conclude that A™! is a symmetric positive definite matrix. [

In the example below, we find necessary and sufficient conditions for a 2 x 2 sym-
metric matrix to be symmetric positive definite and symmetric positive semidefinite,
by using the eigenvalue related criterion from Theorem 5.6. A proof of the same
results using Sylvester’s criterion is given in Lemma 5.5, and is extended to 3 x 3
matrices in Lemma 5.6. '

Ezxample: (i) The matrix ( Z Z > is symmetric positive definite if and only ifa > 0
and ad > b,

(ii) The matrix ( Z 2} ) is symmetric positive semidefinite if and only if a > 0,
d >0, and ad > b*.

Solution: Let A = ( g Z ) The characteristic polynomial of the matrix A is

Pa(t) = det(tI — A) = t* — (a+d)t+ad — b’ (5.27)
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" Recall from Lemma 4.1 that
Pa(t) = (t—=M)(E—=X2) = 2 =1+ X)t+ M), (5.28)

where A1 and A2 are the eigenvalues of A. Since A is a symmetric matrix with real
entries, it follows that A1 and A2 are real numbers; ¢f. Theorem 5.3. From (5.27)
and (5.28), we obtain that

MAX=a+d; A =ad— b (5.29)

(1) From Theorem 5.6 (i), it follows that
A symmetric positive definite <= (A1 >0 and Az > 0). (5.30)

Note that two real numbers are positive if and only if both their product and their
sum are positive. From (5.29), we find that

(A1 >0and Xy >0) < (A1 + A2 > 0 and A Az > 0)
<= (a+d>0and ad > b?). (5.31)

Note that, if ad > b?, then ad > 0, and therefore a and d must have the same sign
and be nonzerc. Thus, '

(a+d>0andad >b>) <= (a>0andad>b®). (5.32)
From (5.31) and (5.32), it follows that
(A >0and X2 >0) <= (a>0and ad> b, (5.33)

and, from (5.30) and (5.33), we conclude that the matrix A is symmetric positive
definite if and only if @ > 0 and ad > b%.

(ii) From Theorem 5.6 (ii), it follows that
A symmetric positive semidefinite = (A1 > 0and X2 > 0). (5.34)

Note that two real numbers are greater than or equal to 0 if and only if both their
product and their sum are greater than or equal to 0. From (5.29), we find that

(A1 > 0and Az > 0) <= ()\1 + A2 >0and A1 A2 > 0) (5.35)
' <= (a+d>0andad>b?). (5.36)

Note that, if ad > b?, then ad > 0, and therefore @ and d must have the same sign.
Thus,

(a+d>0and ad >b*) < (a>0, d>0, and ad > b?). (5.37)
From (5.35-5.37), it follows that
(M >0and A2 >0) <= (a>0, d>0, and ad > b?), (5.38)

and, from (5.34) and (5.38), we conclude that the matrix A is symmetric positive
semidefinite if and only if @ > 0, d > 0, and ad > *. [
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Ezample: Show that the N x N matrix
2 -1 ... 0
-1

is symmetric positive definite.

Solution: Recall from Lemma 4.10 that the eigenvalues of the matrix By are ,

wi = 2(1—COS(NJ::1)), Vji=1:N.

Since —1 < cos(z) < 1 for all z # 2kw, where k is an integer, we find that p; > 0
for all j = 1 : N. Thus, all the eigenvalues of By are strictly positive, and, from
Theorem 5.6, we obtain that By is a symmetric positive definite matrix. [J

Ezample: Show that the N x N tridiagonal symmetric matrix

d —a ... 0

v = | 7% (5.39)
Lo,
0 ... —-a d

is symmetric positive definite if and only if the parameters d and a satisfy the in-
equality '

d > 2|a|cos (Ni 1) . (5.40)
Solution: The eigenvalues of the matrix Ty are

Aj :d—2acos< ), Vj=1:N; (5.41)

T
N+1
see Lemma 4.11. Note that

g 27 N
1 > COS<N+1) > COS(N—H:)' > COS(N—-H) > —1. (542)

If @ > 0, it follows from (5.41) and (5.42) that

A< A2 < L. <7 AN

Recall from Theorem 5.6 that a symmetric matrix is symmetric positive definite if
and only if all the eigenvalues of the matrix are strictly greater than zero. Then, the

matrix Ty is symmetric positive definite if and only if A1 = d — 2acos (ﬁf) > 0,

which is equivalent to

d > 2acos (—]\7”:1) . (5.43)
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If a < 0, we find from (5.41) and (5.42) that
AL > A2 > . > AN
From Theorem 5.6, it follows that Ty is a symmetric positive definite matrix if

and only if Ay > 0.
Recall that cos(m — x) = — cos(z) for all z € R and therefore

N= . 7 = —cos| T _
cos N1 = cos{m Nr1,) = Nii)

Then,
AN = d—2acos<NN_+7_r1> = d+2acos<N7_r|_1>;
and Ay > 0 is equivalent to
o T
- =2 S, .
d > 2aCOS(N+1> |a|cos(N+1>, (5.44)
the last equality comes from the fact that a < 0 and therefore |a| = —a.

The conditions (5.43) and (5.44) for the matrix Ty to be symmetric positive
definite can be written together as

T
d > 2
> |a|cos(N+1),

which is what we wanted to show; see (5.40). [

Although the solutions above are elegant, they use the fact that the eigenvalues
of the matrices By and Tn are known in advance. In practice, deciding whether a
matrix is symmetric positive definite is not done by computing matrix eigenvalues
numerically, which could be computationally expensive. Instead, the Cholesky de-
composition algorithm is applied to the matrix: if the algorithm does not break down,
then the matrix is symmetric positive definite, else it is not. The cost of applying
the Cholesky algorithm to an n X n matrix, and therefore of deciding whether the
matrix is symmetric positive definite, is %n‘o’ + O(n?); see section 6.1 for details.

Many matrices arising in practice are symmetric and weakly or strictly diagonally
dominant. The results below are thus important in practical applications.

Theorem 5.7. (i) Any strictly diagonally dominant symmetric matriz with positive
entries on the main diagonal is symmetric positive definite.

Equivalently, all the eigenvalues of a strictly diagonally dominant symmetric matriz
are strictly greater than 0. h

(i1) Any weakly diagonally dominant symmetric matriz with positive entries on the
main diagonal is symmetric positive semidefinite.

Equivalently, oll the eigenvalues of a weakly diagonally dominant symmetric matriz
are greater than or equal 0.

Proof. Let A be an eigenvalue of A. Note that A is a real number, since A is a
symmetric matrix; cf. Theorem 5.1.
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From Gershgorin’s Theorem, see Theorem 4.6, it follows that there exists j, with
1 < j <mn, such that

[A(,5) — Al < Ry, (5.45)
where R; is given by (4.28), since |A — A(4, 1) = |A(4,7) — A
Since a < |a| for any a € R, we find from (5.45) that
A(G,5) =X < |AGI) — Al < By,

and therefore
A > A(,5) — R;. (5.46)

(i) If A is a strictly diagonally dominant matrix with positive entries on the main
diagonal, then A(4,7) =|A(4,7)|, and, from (4.30), it follows that

AGyj) > Ry (5.47)
From (5.46) and (5.47) we conclude that A > 0 for any eigenvalue A of A, and

therefore that the matrix A is symmetric positive definite; cf. Theorem 5.6.
(ii) If A is a weakly diagonally dominant symmetric matrix with positive entries on
the main diagonal, then A(4,7) = |A(J, )|, and, from (4.29), it follows that

A(3,5) =z R;. +(5.48)

From (5.46) and (5.48), we conclude that A > 0 for any eigenvalue A of A, and
therefore the matrix A is symmetric positive semidefinite; cf. Theorem 5.6. 1

FEzxample: Show that the matrix

3 -0.2 125 -0.35
-0.2 1.5 025 1
1.25 025 25 0.5
-0.35 1 0.5 4

A =

is symmetric positive definite.

Answer: The matrix A; is symmetric and all its main diagonal entries are positive.
It is also strictly diagonally dominant, since, for every row of A, the absolute value
of the main diagonal entry from the row is greater than the sum of the absolute
values of all the other entries in that row:

3 > |—02+1.254]-035 = 1.8
15 > |-02(4+025+1 = 1.45
25 > 1.254025+05 = 2;

4 > |-0354+1+05 = 1.85.

Then, from Theorem 5.7, we conclude that the matrix A; is symmetric positive
definite. [
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' 5.2.1 Sylvester’s Criterion

An elegant and practical way to check whether a matrix of small size is symmetric
positive definite or symmetric positive semidefinite is provided by Sylvester’s Crite-
rion; see Theorem 5.8.

Definition 5.9. Let A be an n X n matriz. The leading principal minors of A are
the determinants of the i x i matrices A; = A(l : 4,1 : 3) made of the 1* upper left
entries of A, for 1 <i<mn.

Definition 5.10. Let A be an n x n matriz. The principal minors of A are the
determinants of all the square matrices obtained by eliminating the same rows and
columns from the matriz A.

Note that an n X n matrix has n leading principal minors and 2" — 1 principal
minors; see also an exercise at the end of this chapter.

2 -3 0
Ezxample: The matrix 1 1 1 has the following three leading principal
-1 5 -3
minors:
det(2) = 2; det ( 11 ) =5 det{ 1 1 1 |=-22
-1 5 =3

and the following seven principal minors:

det(2) =2; det(l) =1; det(—3) = —3;
2 -3 2 0 1 1
det( 11 ):5, det( 1 _3 >:—6, det< 5 _3):—8,

det 1 1 1 =-22. 0

Theorem 5.8. (Sylvester’s Criterion.) (i) A symmetric matriz is symmetric
positive definite if and only if all its leading principal minors are positive.

(it) A symmetric mairiz is symmetric positive semidefinite if and only if all its prin-
cipal minors® are greater than or equal to 0.

The proof of Sylvester’s Criterion is technical and of no further relevance herein.

We will use Sylvester’s Criterion to establish necessary and sufficient conditions
for 2 X 2 and 3 x 3 matrices to be symmetric positive definite. These conditions will
be further used in Section 7.4 to identify whether a given symmetric matrix can be
a covariance or correlation matrix.

SNote that a symmetric matrix whose leading principal minors are greater than or equal to

0 0 1
has all leading principal minors equal to 0, but has a negative eigenvalue, —1, and therefore is not
symmetric positive semidefinite.

0 0 0
0 is not necessarily symmetric positive semidefinite. For example, the matrix 0 -1 0 >
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Lemma 5.5. Let A= ( Z Z > be a 2 X 2 symmetric matriz.

(i) The matriz A is symmetric positive definite if and only if

a>0 and det(A) =ad—b*>0. (5.49)

(ii) The matriz A is symmetric positive semidefinite if and only if
a>0; d>0; det(A)=ad—b*>0. (5.50)
Proof. (i) The leading principal minors of the matrix A are
det(a) =a and det(A) = ad — b°.

From Sylvester’s Criterion (Theorem 5.8), it follows that A is symmetric positive
definite if and only if @ > 0 and ad — b* > 0, which is the same as (5.49).

(ii) The principal minors of the matrix A are
det(a) = a; det(d) =d; det(A) = ad — b*.

From Sylvester’s Criterion (Theorem 5.8), it follows that A is symmetric positive
semidefinite if and only if « > 0, d > 0, and ad — b2 > 0, which is the same as

(5.50). O
Note that, by letting a = d = 1 and b = p it follows from (5.49) and (5.50) that’
1 p
o 1 spd <<= -1<p<l, (5.51)
1 op
o1 spsd — —~1<p<1. (5.52)
di a b
Lemma 5.6. Let A = a dy ¢ be a 3 X 3 symmetric matriz.
b C da

(i) The matriz A is symmetric positive definite if and only if

di>0; dids >a? det(A) = didads + 2abc — dza® — dob® — dic® > 0. (5.53)

(i) The matriz A is symmetric positive semidefinite if and only if

di,do,ds >0, dydy > a?;  dids > b%  dads > ¢ (5.54)
det(A) = didads + 2abe — dsa® — dab® — dic® > 0. (5.55)
Proof. (i) The leading principal minors of the matrix A are
det(dl) = di; (5.56)
d a '

det < o i > = dydz —a% (5.57)

d1 a b
det | a do ¢ = didads + 2abc — dza® — dob® — dic®;  (5.58)

b C d3

"The matrix ( :) ’1) is the correlation matrix of two random variables X; and X2 with

correlation corr(X1, X2) = p, with |p| < 1.
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 see (10.6) and (10.8) for deriving (5.57) and (5.58).

From (5.56~5.58), it follows that requiring all the leading principal minors of the
matrix A to be positive is equivalent to (5.53). Then, from Sylvester’s Criterion
(Theorem 5.8), we conclude that A is symmetric positive definite if and only if (5.53)
is satisfied. - .

(ii) The principal minors the matrix A are

~det(d1) = dn; det(dz) = dy; det(ds) = ds; (5.59)
d di b Y
det( al ;2 ) =didy — a*; det< bl ds ) =dids — b*;  (5.60)
d
det ( N ;3 ) = dads — % (5.61)
d1 a b
cdet| a d2 ¢ = didads + 2abe — dza® — dab® — dyc?; (5.62)
b C d3

From (5.59-5.62), it follows that requiring all the principal minors of the matrix
A to be positive is equivalent to (5.54-5.55). Then, from Sylvester’s Criterion (The-
orem 5.8), we conclude that A is symmetric positive semidefinite if and only if the
inequalities (5.54-5.55) are satisfied. O

Note that, by letting dy = dy = d3 = 1 in (5.53), it follows that

a b
A= 1 spd
c

< d’<1 and det(A) =1+2abc—a®> - b - >0
& —1<a<1 and det(4) =1+42abc~a*~b° —c*>0. (5.63)

SR =
)

Similarly, by letting di = dz = d3 = 1 in (5.54-5.55), it follows that

1 a b
A= a-1 ¢ spsd
b ¢ 1

= @<L <L <1 det(A) =14 2abe —a? — b2 — % > 0
< -1<abc<1; and det(4) =1+ 2abc—a® —b> — 2 > 0. (5.64)

1 a b
Note that the matrix a 1 ¢ is the correlation matrix of three random
b ¢ 1

variables X1, X3, and X3 with correlations corr(X1, X2) = a, corr(X1, X3) = b, and
corr(Xz, X3) = ¢, with —1 < a,b,¢ < 1. The positive definiteness criteria above will
be further used in Section 7.4 to establish possible values for a, b, and ¢ such that
1 a b
the matrix < a 1 ¢ is, indeed, a correlation matrix.
b ¢ 1
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5.2.2 Positive definiteness criteria for symmetric matrices

In this section, we summarize the necessary and sufficient conditions established
in the previous sections for a symmetric matrix to be symmetric positive definite
or symmetric positive semidefinite, i.e., the definitions 5.6 and 5.7, the eigenvalues
criteria from Theorem 5.6, Sylvester’s Criterion (Theorem 5.8), and we anticipate by
including Cholesky decomposition criteria; cf. Theorem 6.2 from Section 6.1.

Let A be an n X n symmetric matrix. Equivalent conditions for the matrix A to
be symmetric positive definite (spd) or symmetric positive semidefinite (spsd) can
be found in Table 5.1.

Table 5.1: Necessary and sufficient conditions for spd and spsd matrices

Aspd < 2*Az>0, Vo #0 definition
Aspsd <= z2'Az>0, Yz eR”

Aspd <= all the eigenvalues of A are > 0 eigenvalue
Aspsd <= all the eigenvalues of A are > 0 criterion

Aspd <= all the leading principal minors of A are > 0 Sylvester’s
Aspsd <= all the principal minors of A are > 0 criterion

Aspd <= the matrix A has Cholesky decomposition Cholesky

decomposition

We include a few comments on the practical relevance of the conditions from
Table 5.1: :

e From a practical standpoint, identifying whether a matrix is symmetric positive
definite is done by running the Cholesky decomposition algorithm from Table 6.1 on
the matrix. If the algorithms breaks down, then the matrix is not symmetric positive
definite; else, the matrix is symmetric positive definite.

o Computing the eigenvalues of the matrix numerically, e.g., by using the QR algo-
rithm, in order to find out whether all the eigenvalues of the matrix are positive, and
thus establish whether the matrix is symmetric positive definite, is a lot more ex-
pensive than running the Cholesky algorithm, and potentially imprecise for matrices
with very small positive eigenvalues.

o Sylvester’s Criterion can be applied to establish, without using numerical methods, .

whether matrices of small size are symmetric positive definite or symmetric positive
semidefinite.

o The criteria given by the definitions of spd and spsd matrices are rarely of practical
use; one of the few such examples can be found in Section 5.2.

Note that a Cholesky—based criterion also exists for symmetric positive semidefi-
nite, although it is of little practical importance; see section 6.5 for details.




5.3. THE DIAGONAL FORM OF SYMMETRIC MATRICES 155

5.3 The diagonal form of symmetric matrices

In this section, we include for completeness the proof of the fact that any symmetric
matrix is diagonalizable; see Theorem 5.4. This proof is based on properties of
orthogonal matrices; see section 10.1.3 for details.

Theorem 5.9. Any symmetric matriz is diagonalizable.
More precisely, if A is a symmetric matriz, then there exists an orthogonal matriz
Q@ and a diagonal matriz A such that

A = QAQ ©(5.65)

Note that, from Theorem 4.4, it follows that the diagonal eniries of the matriz A are
the eigenvalues of the matriz A and the columns of the matriz Q are the corresponding
etgenvectors of A.

Proof. We give a proof by induction.

Any 1 X 1 matrix is a number, and is the same as a diagonal matrix of size 1.

Assume that any symmetric matrix of size n — 1 is diagonalizable. We will show
that any symmetric matrix of size n is also diagonalizable.

Let A be an n X n symmetric matrix. Let A1 and v; be an eigenvalue and a
corresponding eigenvector of norm 1 of the matrix A, i.e., such that Avy = Ayvy,
with v1 # 0 and :

Noil)> = vior = 1. (5.66)

Let Q1 be an n x n orthogonal matrix with the vector vy as the first column, i.e.,
let

Q= (ulael. .. lew)

where ¢; are n X 1 column vectors such that
(vi,@) = giv1 = 0, Vi=2:mn, (5.67)
and qu||2 =¢igi=1,fori=2:n.

From the matrix-matrix multiplication formula (1.11), and using the fact that
Av1 = M\, we find that

AQl = (AU1 |Aq2 | ] Aqn) = (/\11}1 |AQ2 | | Aqn)
Then,
v
s
QIAQ, = T (M1 | Age | ... | Agn)
an
Mivivr viAge ... viAgn
Mgvi ¢3Ag ... ghAgn

Mg GhAe ... ¢hAge
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M viAge ... viAgn
0 ¢dAge ... GAg

= . . . . , (5.68)
0 ghAge ... ¢hAg

where (5.66) and (5.67) were used for the last equality.
Since the matrix A is symmetric, A* = A, and the matrix Q% AQ; is also symmet-
ric:
(@14Q1)" = QIA'(QY)" = Q1AQu. (5.69)
Then, from (5.68), it follows that all the entries (1,k), with 2 < k < n, from the first
row of the matrix Q% AQ: must also be equal to 0, i.e.,

A1 0 . 0
; 0 ¢Ae ... GAg
QrAQL = : : : :
0 ghAg ... g.Agn

Denote by An—1 the (n — 1) X (n — 1) matrix made of the rows 2 : n and the
columns 2 : n of the matrix Q% AQn, i.e.,

GA@ ... ¢iAg
A, 1 = : : .
L : .
anqZ e anq‘n
Then,
M 0 0
: 0
QIAQ = . : (5.70)
. An_q .
0

Since Q{AQ: is symmetric, it follows that An—1 is a symmetric matrix of size
n — 1. Then, from the induction hypothesis, we obtain that A,_1 is diagonalizable,
i.e., there exist an orthogonal matrix Qn—1 of size n — 1 and a diagonal matrix An—1
of size n — 1 such that

An—l = Qn~1An-—1Q%—1' (571)
From (5.70) and (5.71), we obtain that
A O e 0 A0 . 0
t 0 0
QiAQ1 = = : "
An—1 : Qn-1An—1Qn_1
0 0 .
1 0 0 A 0 0 1 0 0
0 0 0
Qn—l An~1 Q;’“l ,
0 0 0

which can be written as

QIAQ1 = QnhnQr, (5.72)




5.4. REFERENCES o : 157

1 0 0 M 0O 0
0 0
where @, = . 0 | and A, = . A | are an or-
. n—1 - n—1
0o - 0

thogonal matrix of size n and a diagonal matrix of size n, respectively.
We multiply (5.72) to the left by the matrix @ and to the right by the matrix
Q%. Since Q1Q% = I, see (10.14), it follows that

Q(QIAQNQT = Qi(QnAnQ1)QS
= (QQDAQ1IQ]) = (QiQn)A(Q:1Qn)"
— A = QATLQt7

where Q = (hQx.

Note that @ is an orthogonal matrix, since it is the product of two orthogonal
matrices; ¢f. Lemma 10.6. Then, Q" = Q7%, see (10.15), and

A = QAth = QAnQ_l
is the diagonal form of A. Thus, the matrix A is diagonalizable.

We conclude, by induction, that any symmetric matrix is diagonalizable. (I

5.4 References

An elegant proof for Sylvester’s criterion can be found in Gilbert [16].
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Exercises

. Show that the matrix ( % % ) is symmetric positive semidefinite but is not

symmetric positive definite.

. Show that a 2 x 2 matrix A is symmetric positive definite if and only if A is

symmetric, trace(4) > 0, and det(A) > 0.

Let A be a symmetric positive definite matrix. Use the diagonal form of the
matrix A to find a matrix B such that B? = A.

Show that a matrix A is symmetric positive semidefinite if and only if there-

exists a symmetric matrix B such that B? = A.

. Show that the inner product of two vectors is bounded from above by the

product of the norms of the vectors, i.e., show that

(u,v) < lull [o]], ¥ u,veR™ (5.73)

Hint: Use the facts that
lltw 4+ o|® = £3||ul|* + 2t(u,v) + ||v||2 >0, VteR,

and that a quadratic polynomial is nonnegative if and only if its discriminant
is less than ot equal to 0, i.e.,

at? +bt+c > 0, VteR <= b —dac < 0,
where a, b, and c¢ are fixed real numbers.

Note: The inequality (5.73) is the Cauchy-Schwarz inequality for innner prod-
ucts. For the Euclidean inner product and Euclidean vector norm, the inequal-
ity (5.73) becomes

n 2 n n
(ZWW) < (Zuf) (ﬁ‘vz-2>, Yu,v €R, i=1:n,
i=1 =1 i=1

which is the classical version of the Cauchy-Schwarz inequality for real numbers.
Let A be a symmetric positive semidefinite matrix, and let B be a symmetric
matrix such that B* = A.

(i) Show that
(Az,y) = (Bz,By), VY x,y € R, (5.74)

where (-,-) denotes the Euclidean inner product.
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10.

11.

(ii) Show that

(Az,y)* < (Az,z) (Ay,y), Yo,y eR™ . (5.75)

Hint: Note that, from the Cauchy—Schwartz inequality (5.73), it follows that
(Bz, By) < ||Bz|| || Byl|.

Let A and v be an eigenvalue and the corresponding eigenvector of the square
matrix A of size n. Let @ be an orthogonal matrix of size n. Show that )\ is
also an eigenvalue of the matrix Q' AQ. What is a corresponding eigenvector?

Let @ be an orthogonal matrix of size n, and let A be a square matrix of size
n. Show that the matrix Q*AQ has the same characteristic polynomial as A,
i.e., show that '

Poiag(x) = Pa(z), Yz eR.

. Let A be a symmetric positive definite matrix with diagonal form A = QAQ?,

where @ is an orthogonal matrix and A = diag(Ay)k=1.» is a diagonal matrix.
Recall that Ak, & = 1 : n, are the eigenvalues of A, and that \x > 0 for all
k =1:n, since A is symmetric positive definite.

Let

AY? = diag (\/X/Z)

1
and A”Y? = diag (——) ,
k=Lln vV )\}g k=1:n

and let AY? and A~'/? be the matrices given by

, A2 - QA1/2Qt and A2 — QA—l/th.

Show that
(22 = 4
(A—1/2)2 — A~1;
(A1/2)~1 — A—1/2.

Show that an n X n matrix has 2" - 1 principal minors.

Show that the matrix

1 0.2 —-0.2 0.1
0.2 1 -0.25 0.05
-0.2 -0.25 1 -0.15
0.1 0.05 —-0.15 1

A =

ds symmetric positive definite.
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12.

13.

14.

15.

16.
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Let

1 0.05 0.25 0.55
0.05 2 1 1.25
0.25 1 4 2.5
0.55 1.2 2.5 6

A =

(i) Show that the matrix A is not strictly diagonally dominant.
(i) Show that the matrix A is symmetric positive definite.

Let A be a symmetric positive semidefinite matrix. Show that the matrix A®
is also symmetric positive semidefinite for any positive integer k.

Recall that any symmetric positive definite matrix is nonsingular. Let A be
a symmetric positive definite matrix. Show that A~™! is a symmetric positive
definite matrix.

Let A be a square matrix such that A2 = A. Show that the matrix A cannot
be strictly diagonally dominated unless A is the identity matrix.

Let A be an n X n symmetric positive definite matrix, and let M be an n x m
matrix.
(i) Show that the matrix M*AM is symmetric positive semidefinite.

(ii) Show that the matrix M*AM is symmetric positive definite if and only if
the columns of the matrix M are linearly independent.



Chapter 6

Cholesky decomposition. Efficient cubic sp]ine
interpolation.

The Cholesky decomposition of a matrix.

Symmetric positive definite matrices and the Cholesky decomposition.

Uniqueness of the Cholesky decomposition.

Pseudocode 'and operation count for the Cholesky decomposition.

Linear solvers for symmetric positive definite matrices. |

Solving linear systems correspon(iing to the same symmetric positive definite matrix.
Optimal linear solvers for tridiagonal symmetric positive definite matrices.

The efficient implementation of the cubic spline interpolation.

Efficient cubic spline interpolation for zero rate curves.

6.1 Cholesky decomposition

A natural idea to reduce the costs of an LU decomposition for a symmetric non-
singular matrix is to obtain an LU-type decomposition where the lower and upper
triangular matrices are transposes of each other. Such a decomposition, which only
exists for symmetric positive definite matrices, is called the Cholesky decomposition,
and is made precise below in a way that ensures its uniqueness.

Definition 6.1. The Cholesky decomposition of a nonsingular symmetric matriz A

consists of finding a nonsingular upper triangulor matriz U with positive entries on

the main diagonal such that '
: A = U'U. (6.1)

The matriz U is called the Cholesky factor of A.

Lemma 6.1. If a nonsingular symmetric matriz has a Cholesky decomposition, then

the matriz must be symmetric positive definite.

Proof. Let A be an n X n nonsingular symmetric matrix, and let A = U tU be the
Cholesky decomposition of A, where U is an n X n upper triangular matrix. Then,

Az = 2'U'Uz = (Uz)'Uz = ||Uz|]*> > 0, Vz €R™ (6.2)
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From (6.2), we find that
TAr=0 < Uz=0 <= gz=0 (6.3)

the last equivalence comes from the fact that U is a nonsingular matrix; see Defini-
tion 6.1. k

From (6.2) and (6.3), and using (5.18), we conclude that A is a symmetric positive
definite matrix. d

We now show that every symmetric positive definite matrix has a Cholesky de-
composition:

Theorem 6.1. Any symmetric positive definite matriz has a Cholesky decomposition.

Before providing a proof for Theorem 6.1, it is important to note that, from

Lemma 6.1 and Theorem 6.1, the following characterization of matrices with Cholesky .

decomposition can be given:

Theorem 6.2. A nonsingular symmetric matriz has a Cholesky decomposition if
and only if the matriz is symmetric positive definite.

The proof of Theorem 6.1 given below is a constructive proof that is the basis
for the Cholesky decomposition pseudocode from Table 6.1. For a proof by induc-
tion, which is elegant but of less computational consequence, see Theorem 10.9 from
Chapter 10 and the proof therein.

Proof of Theorem 6.1. Let A be an n x n symmetric positive definite matrix. We
are looking for an n X n upper triangular matrix U with positive entries on the main
diagonal such that

U'U = A. (6.4)

Ezxample: 4 x 4 matriz
For clarity, we include explicit formulations of certain formulas for 4 X 4 matrices. In
particular, formula (6.4) is written as follows if A and U are 4 x 4 matrices:

U1y 0 0 0 UL,1) U(L,2) U(1,3) U®,4)
U(1,2) U@2 0 0 0 U@®2) U@23) U@24)
U(1,3) U(23) U®B,3) 0 0 0 U3 UB4)
U(L,4) U2,4) U3,4) U4,4) 0 0 0 U(4,4)

A(1,1) A(L,2) A(L,3) A(1,4)

_ | A1) Al22) A(2,3) A(24)

= | A(3,1) A(3,2) A(3,3) A(3,4)

A(4,1) A(4,2) A(4,3) A(4,4)

If U'U = A, by multiplying the first row of U* by the first column of U, we obtain
that

(U(1,1))* = A1, 1). (6.5)

The equation (6.5) is solvable for U(1, 1), since A(1,1) is nonnegative: if A is sym-
metric positive definite, then 2* Az > 0 for any = € R™ with = # 0; cf. (5.17). For
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z=e1 = (10 ... 0)", we obtain, either by direct computation or by using (10.20),
that z' Az = el Ae; = A(1,1) > 0.

Note that (6.5) has two possible solutions: U(1,1) = /A(L,1) and U(1,1) =
—+/A(1,1). Since the matrix U must have positive entries on the main diagonal, see
Definition 6.1, we conclude that

U@,1) = A(LD. (6.6)

Moreover, if U*U = A, then, by multiplying the first row of U* by the column &
of U, we find that

UL D)U@, k) = A(LE), Vk=2:n. (6.7)
From (6.7), and using (6.6), we obtain that

AL, k)
1)

U(l,k) = Vk=2:n. (6.8)
Thus, the first row of U is computed using (6.8). The other rows of the matrix U
are computed recursively as follows:
Write the matrix U as

U@,y U@,2:
v = < G U(2(:n,2_7:1)n) ) (6.9)

where U(1,2:n) = (U(1,k))s=2:n isan 1 x (n — 1) row vector and U(2:n,2:n) =
(U(4,k))2<jk<n is the (n — 1) x (n — 1) upper triangular matrix with positive entries
on the main diagonal made of the entries from the rows 2, 3, ..., n and the columns
2,3,...,nof U.

Since A is a symmetric matrix, it follows that A(2 : n,1) = (A(1,2 : n))!, the
matrix A can be written as follows:

A(1,1 A(L,2:n A(1,1 A(1,2:n
4= ( A(Q(:n,)l) A(2(:n,2:)n) > ( (A(1(2 7)1))t A(Z(:n,2:)n) ) (6.10)

where

A(1,2:n) = (A(1,k))k=2n isan 1 x (n—1) row vector;
A(2:n,2:n) = (A, k))2<jk<n Isan (n—1) X (n— 1) matrix.

From (6.9) and (6.10), it follows that A = U*U is equivalent to

A 1;1 A 1,227’L
< A(Q('n)l) A(2(:n,2:)n) ) (6.11)

A(l,1 A(1,2:
A(l 2: 7)1 ¢ A(2(:n,21})n)> (6.12)

(
_ (U(l 1) U@1,2: n)) )t( U(B,1) U(1,2: n) )
(wh

U(2 n,2:n U(2:n,2:n)

0 U1 U(1,2:
U(l 2 ” (U2:n,2:n)) >( (0 : U(2(:n,27:12n) )'(6'13)
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By using block matrix multiplication to multiply the rows 2 : n of U t by the
columns 2 : n of U, we obtain from (6.11) and (6.13) that?
A@2:n,2:n) = (UA,2:n) U1,2:n) + (U2:n,2:0))'U(2:n,2:n), (6.14)
and therefore ‘

(U@:n,2:0)U2:n,2:n) = A2:n,2:n) — (U(1,2:0)" U(1,2:n). (6.15)

Erxample: 4 x 4 matriz
For n = 4, we obtain that A(1,2:n), A(2:n,2:n), U(1,2:n),and U(2:n,2:n)
are given by

A(1,2:n) = A(3,2:4) = ( AQ1,2) A(1,3) A(1,4)
(2,2) A(2,3) A2,
(

)5
< A 2,4) >
A(3,2) A(3,3) A(3,4)
A(4,2) A(4,3) A(4,4)
1
(

)

A(2:n,2:n) = A(2:4,2:4)

U(1,2:n) = U(1,2:4)

(U@1,2) U@Q,3) U1,4));
( U
and therefore (6.12-6.13) is written as follows if A and U are 4 x 4 matrices:

A(1,1) A(L,2: 4)
( (A(1,2 :'4))t A(2:4,2:4) )

u(,1) 0 U@, U(1,2:4

From (6.16), we find the following explicit form of (6.14) for 4 x 4 matrices:
A(2:4,2:4) = (UQ,2:4)'UQ,2:4) + (U(2:4,2:4)'U(2:4,2:4),

U(2:m,2:n) = U(2:4,2:4)

i

2
0 U®3,3) U4
0

2) U(2,3) U2,4)
0 U4,4)

and therefore

(U2:4,2:4)U@2:4,2:4) = A2:4,2:4) — (U(1,2:4)" U(1,2:4). (6.17)

From (6.8), it follows that

A(1,2:n)

U(1,2:n) = G

and therefore

(A(1,2: )P A(1,2:n)
A(1,1) '

1Since U(1,2: n) is an 1 X (n — 1) row vector, it follows that (U(1,2: n))* isan (n — 1) x 1
column vector, and therefore the result of the column vector — row vector multiplication (U(1,2 :
) U(1,2 : n) is an (n — 1) X (n — 1) matrix, see (1.6), which is the same size as the matrices
A(2:n,2:n) and U(2:n,2:n). Thus, the matrix dimensions in (6.14) are consistent.

U(,2:n) ' UQ,2:n) = (6.18)
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. Then, from (6.15) and (6.18), we obtain that

(A(1,2:n))*A(1,2:n)
A(L1)

The crucial step.that makes the Cholesky decomposition possible is that, if A is
a symmetric positive definite matrix, then the matrix

(A(1,2:n))PA(1,2: n)
A(L,1)

from the right hand side of (6.19) is symmetric positive definite matrix. This result
is proved in Chapter 10; see Lemma 10.17.

Then, if follows from (6.19) that the (n — 1) X (n — 1) matrix U(2 : n,2 : n) is
the Cholesky factor of the symmetric positive definite matrix from (6.20), and we
conclude that the matrix A has a Cholesky decomposition A = U*UJ with Cholesky

U(1,1) U(1,2:n) O

0 U(2:n,2:n) )

The proof above also provides the idea for the recursive implementation of the
Cholesky decomposition algorithm. Once the first row of U is computed, the entries
of A(2:n,2:n) are updated® to A(2:n,2:n) — (U(1,2: 7)) U(1,2:n), ie.,

A(2:m,2:n) = A(2:n,2:n) — (U(1,2:n) U(1,2:n). (6.21)

Then, the first row of the matrix U(2 : n,2 : n) (which coincides with the second
row of U without the first entry which is equal to 0) is computed from the matrix
A(2:m,2:n) — (U(1,2:n) U(1,2:n) in the same way as the first row of U was
computed from the matrix A. The matrix A(3 : n,3 : n) is then updated and will
again be a symmetric positive definite matrix, and therefore this recursive process
continues until all the rows of U are computed.

The Cholesky factor U is obtained once all its n rows are computed recursively
via this algorithm; see section 6.1.1 for more details.

(U(2:m,2:n))'U(2:n,2:n) = A2:n,2:n) — . (6.19)

A(2:n,2:n) —

(6.20)

factor U =

Theorem 6.3. The Cholesky decomposition of a symmetric positive definite matriz
18 unique.

Proof. We give a proof by contradiction. Assume that the symmetric positive definite
matrix A of size n has two Cholesky decompositions, i.e., assume that

A = Uilh and A = Uil

where U, and Uz are upper triangular matrices with positive entries on the main
diagonal. Then, ‘

UiUy = UsUs. (6.22)

Note that U; and U; are nonsingular matrices, since any Cholesky factor is a

nonsingular matrix; see Definition €.1. Multiply (6.22) by (UZ)™' on the left and by
U7 on the right and obtain

U™ (Ui) U7 = (U3) T (UsU) U
< (U7 (hUTY) = ((Us)™'Us) - (U2UTH)
= (U)'U = U, - (6.23)
“The entries of A(2 : n,2 : n) are updated using (6.15), ie., A2 : n,2 : n) — (U(1,2 :

n))t U(1,2 : n); formula (6.19), i.e., A(2:n,2:n) - Ld2n LA 2 , is only used for the proof
A(LD
of the existence of the Cholesky decomposition.
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since U1 Ut =T and (U)™'UL = 1.

Recall from Lemma 1.17 that the inverse of an upper triangular matrix is upper
triangular, and the inverse of a lower triangular matrix is lower triangular, and, from
Lemma 1.15, that the product of two upper triangular matrices is upper triangular,
and the product of two lower triangular matrices is lower triangular. Thus, the matrix
Ur ! is upper triangular and therefore the matrix UpUT! is also upper triangular.
Similarly, the matrix (/$) ™ is lower triangular and therefore the matrix (U3) U7 is
also lower triangular. Since the matrices (U3)'Uf and U,UT " are equal, see (6.23),
it follows that they must be diagonal matrices.

Let D = diag(d;)j=1:n be a diagonal matrix such that

D = (Us)"'U{ = DU
Then, by multiplying D = UsU; ! to the right by Uy, we find that
Uy, = DUy (6.24)
and therefore
A = UlUs = (DU)'Uz = UthDU1 = UID*Uy, (6.25)

where the last equality follows from the fact that D* = D, since D is a diagonal
matrix. Since A = U{U; and U; is a nonsingular matrix, it follows from (6.25) that

Uity = UIDU, < (UH) Ui (U) ™ = (Uf) 'ULD*UL (Uy) ™!
— I = D% :

Note that D? = diag(d3);=1:n, see (1.93), and therefore I = D? if and only if d} = 1
for all j = 1 :n. Thus, all the diagonal entries of D are either 1 or —1, i.e.,

di=1 or dj=-1, Vj=1:n. (6.26)
Recall from (6.24) that Us = DU;. From Lemma 1.10, we obtain that the j-
th row of the matrix DU; is equal to the j-th row of the matrix Ui multiplied

by d;. In particular, (DU1){(j,5) = d;U1(4,7). Since Uz = DUs, it follows that
Ua(4,4) = d;U1(4,7), and therefore

— U2(] J )
U1(4,4)
since, by Definition 6.1, all the main diagonal entries of U; and U, are positive.
From (6.26) and (6.27), we obtain that d; = 1 for all j = 1 : n, and therefore the
matrix D = diag(d;) =1~ is equal to the identity matrix, i.e., D = I.
Since D = I, it follows from (6.24) that U, = Ui, and we conclude that the
Cholesky decomposition of the matrix A is unique. (W]

> 0, Vi=1:n, (6.27)

6.1.1 Pseudocode and operation count for Cholesky
decomposition ’

Based on the proof of Theorem 6.1, the algorithm for finding the Cholesky decom-
position of a symmetric positive definite matrix can be implemented recursively as
detailed below; see also the pseudocode from Table 6.1.

Let A be a symmetric positive definite matrix and let U be the Cholesky factor of A.

e Compute the first row of U:
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U(1,1) = /A(1,1)
fork=2:n :

U(Lk) = 592
end

e Update the (n — 1) X (n — 1) lower right part of A as follows:
A(2:n,2:n) = A(2:n,2:n) — (UQ,2:n)'U(L,2:n), (6.28)

see (6.21), which can be written entry by entry as follows: .

forj=2:n
fork=j:n
end

end

Note that in the second “for” loop above, only the upper triangular part of the
matrix is updated, i.e., we use “for k = 7 : n” instead of “for k = 2 : n”, as was the
case for the LU decomposition without pivoting, see the pseudocode from Table 2.5,
since the matrix A(2:n,2:n)—(U(L,2:n))*U(1,2 : n) is symmetric. This accounts
for the computational savings in the Cholesky decomposition compared to the LU
decomposition; see Lemma 6.2 and Lemma 2.3.

Every row of U is thereafter computed recursively from the latest updated part
of the matrix A; see also the 4 x 4 example below. For example, to compute the i~th
row of U, we do the following:

o Compute the i—th row of U:

U(4,1) = +/A(4,1)
fork=(GE+1):n
: . AGk)
UGk = T
end

e Update the (n — %) x (n — %) lower right part of A as follows:

AG+1:n,i+1:n) = Ali+1:n,i+1:n)
— (UG, i+1:0)'U(4,i4+1:n0), (6.29)

which can be written entry by entry as follows:

forj=0G+1):n
fork=4:n
end

end

In the second “for” loop above, only the upper triangular part of the matrix is
updated, i.e., we use “for k = j : n” instead of “for k = (¢ + 1) : n”, since the matrix
AG+1:ni+1:n) - (U@G,i+1:n)U®E,4+1:n) is symmetric.

Further clarification on the recursive part of the Cholesky decomposition algorithm
can be found in the example below for a 4 x 4 matrix.
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Ezample: Let A be the following symmetric matrix:

9 -3 6 -3
-3 5 -4 7
6 -4 21 3
-3 7 3 15

A= (6.30)

We attempt to find the Cholesky factor U of the matrix A using the recursive
method described above. If this method fails, then A is not a symmetric positive
definite matrix. If the method succeeds, the Cholesky factor of A is found.

The first row of U is computed as follows: U(1,1) = /A(1,1) = 3; cf. (6.6).
From (6.8), we find that U(1,k) = ALR) “for all k= 2 : 4, and therefore

T(1,1)
-3 -3 6 6
2 I e I ——— = — 1] frovmd = - 2
-3 -3
OY=ga5~5 7}
Then, the current form of U is
3 -1 2 -1
0 U2 UE@3) U@
U= 10 0 U@33) U®BA4 (6.31)
0 0 0 U(4,4)

The updated form of the 3 x 3 matrix A(2 : 4,2 : 4) is computed using (6.28),
from A(2: 4,2 : 4) obtained from (6.30) and with U given by (6.31), as follows:

A(2 :4,2:4)
A(2:4,2:4) — (U(1,2:4)'U(1,2:4)

5 —4 7 ~1
= -4 21 3 - 2 (12 -1
7 3 15 -1
5 —4 7 1 -2 1
= -4 21 3 - -2 4 =2
7 3 15 1 -2 1
4 -2 6
-2 17 5 |.
6 5 14

Thus, the updated form of the 3 x 3 matrix A(2:4,2:4) is

' 4
Al2:4,2:4) = <~2
6

Then,

(U(2:4,2:4)'U(2:4,2:4) =

5 14

4 -2 6
—2 17 5 |,
6 5 14

2 6
17 5 ) (6.32)
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which can be written as

U2 0 0 U(2,2) U(2,3) U24)
U(2,3) U(3,3) 0 0 U(3,3) U@B4)
U(2,4) U(3,4) U(4,4) 0 0 U44) |
4 -2 6

= | -2 17 5
6 5 14

The unknown entries from the second row of U can be computed as the first row
of the Cholesky factor of the 3 x 3 matrix above, as follows:

U(2,2) =Vd=2
-2 -2 6 6
2,8) = — = 2 =, 2 4) = _ 0 _
V&Y =069 = 3 P U@ =gray =5 =3
The current form of U is

3 -1 2 -1

_ 0 2 -1 3

U=1o o uE3 use (6.33)

0 0 0 U4, 4)

The- updated form of the 2 x 2 matrix A(3 : 4,3 : 4) is computed using (6.29),
from A(3:4,3:4) obtained from (6.32) and with U given by (6.33), as follows:

A(3:4,3:4)
A(3:4,3:4) — (U(2,3:4)"U(2,3:4)

(% 4)- ()
- (FE) (59
(5 %)

Thus, the updated form of the 2 X 2 matrix A(3:4,3:4) is

i

i}

A(3:4,3:4) = (186 2) : (6.34)

Then,

(U(B:4,3:4)'U3:4,3:4) = ( s §>,

which can be written as
U(3,3) 0 U(3,3) U(3,4) . 16 8
U3,4) U(4,4) 0 U(4,4) - 8 &5/
The unknown entries from the third row of U can be computed as the first row of

the Cholesky factor of the 2 x 2 matrix above, as follows:

UB3,3)=Vi6=4 U@B4)=— - =5_9

U(3,3) 4
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The current form of U is

3 -1 2 -1
o 2 -1 3
U=14 o 4 5 (6.35)
0 0 0 U44

The updated form of A(4,4), which is a number, is computed using (6.29), from
A(4,4) obtained from (6.34) and with U given by (6.35), as follows:

A(4,4) = A(4,4)-UB,HUB,4) = 5-2-2 = 1,
which corresponds to
U@4,49)" = 1.
Thus, U(4,4) = /1 = 1 since U(4,4) must be positive. We conclude that A is a
symmetric positive definite matrix with the following Cholesky factor:
-1 2 -1

U = 0

3
0
0
0

oo

-1 3
4 2
0 1

The pseudocode for the Cholesky decomposition can be found in Table 6.1.

Table 6.1: Pseudocode for Cholesky decomposition

Function Call:
U = cholesky(A)

Input:
A = symmetric positive definite matrix of size n

Output:
U = upper triangular matrix such that U*U = A

Ui, k) = AG, k) /U35, 1); // compute row % of U
end .
forj=(i+1):n

fork=j:n

A(j7k) = A(]>k) - U(Z7.7)U('L7k); v

end

end
end

U(n,n) = /A(n,n)

Recall from Lemma 2.3 that the operation count for the LU decomposition is
§n3 + O(n?). As expected, the operation count for the Cholesky decomposition is
approximately half of the operation count for the LU decomposition:
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N
e

Lemma 6.2. The operation count for the Cholesky decomposition of an n X n sym-
metric positive definite matriz is :

§n3 + oY), | (6.36)

Proof. At step i, computing U(i,%) = 1/A(4,1) and going through the “for” loop

fork=(0G+1):n
U(i,k) = A(4,k)/U(4,9)

end .

to compute the i—th row of U requires
n—i+1 (6.37)

operations.
Also at step ¢, the double “for” loop

forj=0G+1):n
fork=j5:n
A(.77k) A(7, ) U(’L,])U(Z,k),
end
end

to update A(i+1:mn,i+1:n) requires

2.2.2= D 2An—j+1) =23 (n-j+1) (6.38)
j=t+1 k=j J=itl j=i+1
operations. By letting | = n—j+1 in (6.38), and using the fact that )7_ 1 = 2&tl,

see (2.46), we obtain that

2 Z (n—j+1) = 221 = 2@M = (n—1i)(n—i+1). (6.39)

2
j=i+1l

When accounting for the outside “for” loop “for i = 1: (n —1)”, see Table 6.1,
and for the one extra operation required for U(n,n) = y/A(n,n), we obtain using
(6.37) and (6.39) that the operation count for the Cholesky decomposition is

n—1

1+> (n—i+)+m-idn—i+1) = 1+n2_:(n—z'+1)2 (6.40)

=1

Recall from (2.46) that Y 7 1* = BEEDCPED - Then by Jetting I = n— 4+ 1 in
(6.40), we obtain that

n—1
14+> (n—i+1)°
=1

I

143 - Zﬂ SEIGRICED
1=2

_ 2_n_3+_3nﬂ _n, n . n
6 3 2 6
1
= §n3+0(n2);

see (10.80) in Section 10.2.3 for a proof of the last equality.
Thus, the operation count for the Cholesky decomposition is %n3 + O(n?). O
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We conclude this section by computing the Cholesky factors of 2 x 2 and 3 x 3
symmetric positive definite matrices. '

Lemma 6.3. The Cholesky factor of the 2 X 2 symmetric positive definite matriz
( a b ) i.e., with a > 0 and ad > b*, see (5.49), is

b d »
b
U = < ve \/ﬁg > (6.41)
U(1,1) U(L,2)

Proof. We compute the Cholesky factor U = ( 0 U(2,2)

) of the matrix

A= ( Z Z ) by using the Cholesky decomposition algorithm from Table 6.1. From

(6.6) and (6.8), we find that U(1,1) = /A(L,1) = va and U(1,2) = $§53 = %
Then, from (6.15) it follows that

o

U(2,2)? = A(2,2)—U(1,2) U(1,2) = d_% _ ad;bz.

Note that ﬂ;—lﬁ > 0 since b* < ad. Then, U(2,2) = \/“-d—;ﬁ, since the diagonal
entries of a Cholesky factor must be positive. We conclude that the Cholesky factor

of the matrix A is
va o 5=
U= 0 ad—b2 :

a

d

Note that, by lettiﬁg a=d=1and b= pin (6.41), where |p| < 1, we obtain that

the Cholesky factor of the matrix ( ; T ) with —1<p<lis

( (1). 1p_p2 ) (6.42)

Lemma 6.4. The Cholesky factor of a 3 X 3 symmelric positive definite matriz
d1 a b
a dy ¢ |, e, withdi, dq, ds, a, b, ¢ satisfying the inequalities (5.53), 1s
b C d3

Vi a/di : b/v/di .
U= | 0 VaR-@NEG (de-ab)/Vh({dd—d) | . (6.43)
0 0 \/ dydgdg +2ab;;dd23f22—d2b2 —djc?

Proof. For simplicity, we only prove (6.43) for dy = da = d3 = 1, i.e., we show that

1 a b
the Cholesky factor of the 3 x 3 symmetric positive definite matrix ( a 1 ¢ ) is

b ¢ 1
1 a b
v= |0 Viza® (c—ab)/Vi-a® |, (6.4
0 0 14+2abc—a?—b2—c2

1-a
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‘The general proof of (6.43) follows similarly.

1 a b )

Let A = a 1 ¢ ) be a 3 X 3 symmetric positive definite matrix. From
b ¢ 1 '

(5.63), we obtain that
~1<a<1 and 1+42abc > a®+b°+c (6.45)
U1y uU,2) U(1,3)

IfU = 0 U(2,2) U(2,3) is the Cholesky factor of A, then, from

0 0 U3,3) :

the first step of the Cholesky decomposition algorithm, see (6.6) and (6.8), we find
that '

A(1,2) A(1,3)
U = VAL =1 VLY = Gen=a VLY = Fry=b
Thus, the current form of U is
1 a b
U = 0 U((2,2) U(2,3) |. (6.46)
0 0 U(3,3)
Then, from (6.15), we find that the matrix ( U(%’ 2) gg’ gg ) is the Cholesky

factor of the following matrix:

(c1)-(8)e»

|
TN
(e
0
N’
|
TN
Q e
L ol V]
o Q
[SR
N—

1—a®> c—ab
- (o i) o

1—a®> c—ab . -
oc—ab 1—b2 ) from (6.47) satisfies the conditions (5.49)
and is therefore symmetric positive definite: from (6.45), it follows that 1 — a® > 0,

since —1 < a < 1, and that
(1—a®(1-b%) —(c—ab)® = 1+2abc—a®> —b°—¢* > 0.

2 —
Since ( U(%’ 2 U3 ) is the Cholesky factor of ( l—a" c—ab ), we

Note that the matrix (

U(@3,3) c—ab 1-1
obtain from (6.41) that
V1—a? _c—ab
( U(2,2) U(2,3) ) _ ( 1-a i )
0 U 3,3 B 1—-a2)(1=b2)—(c—ab)?
(3,3) 0 [Q=e2-b) (eeb)

0 1+2abc—a? b2 —c? (6.48)

_ <\/1—a2 (c—ab)/\/l—a2>

From (6.46) and (6.48), we conclude that the Cholesky factor of the matrix A is

1 a b
U = 0 \/1-(12 (c—ab)/\/l—a2 , (6.49)

14-2abc—a? —b2—c2
0 0 (VA PPy
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which is the same as (6.44). O

6.2 Linear solvers for symmetric positive definite
matrices

Using the Cholesky decomposition of a matrix is a computationally efficient way of
solving linear systems corresponding to symmetric positive definite matrices.

Let A be a symmetric positive definite matrix of size n, and let b be a column
vector of size n. If A = [JtU is the Cholesky decomposition of A, then, solving a
linear system Az = b is equivalent to solving

U'Uz = b.
This is the same as solving
Uly = b

for y, which can be done using forward substitution since the matrix U? is lower
triangular, and then solving
Uzx=y
for z, which can be done using backward substitution since the matrix U is upper
triangular.
The pseudocode for.solving a linear system corresponding to a symmetric positive
definite matrix using the Cholesky decomposition can be found in Table 6.2.

Table 6.2: Linear solver using Cholesky decomposition

Function Call: A\
£ = linear_solve_cholesky(A,b)

Input:
A = symmetric positive definite matrix of size n
b = column vector of size n

Qutput:

z = solution to Az =b

U = cholesky(A); // Cholesky decomposition of A
y = forward_subst(U", b); /] solve Uty =b

z = backward_subst(U, y); // solve Uz =y

The operation count for the linear solver from Table 6.2 is as follows:

o 1n® 4+ O(n?) for the Cholesky decomposition of A; cf. (6.36);
e n? + O(n) for the forward substitution for solving Uty = b; cf. (2.8);
e n? + O(n) for the backward substitution for solving Uz = y; cf. (2.19),
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for a total operation count of -

(30°+06®) + 0 + O + (" + O)) = " + O

see (10.87) from Section 10.2.3 for a proof of the last equality.

6.2.1 Solving linear systems corresponding to the same spd
matrix

In this section, we show how the Cholesky decomposition of a matrix can be used to
solve multiple linear systems corresponding to the same symmetric positive definite
matrix efficiently.

Assume that we want to solve p linear systems corresponding to an nXn symmetric
positive definite matrix A. In other words, we want to find n X 1 vectors z;, 2 = 1: p,
such that

Az; = b, Vi=1:p, (6.50)

where b; is a column vector of size n, for i =1 : p.

One way to solve the linear systems from (6.50) would be to use the routine
linear_solve_cholesky from Table 6.2 to solve each one of the p linear systems inside
a “for” loop as follows:

fort=1:p
x; = linear_solve_cholesky(A,b;)
end
This would require
1 3 2 1 4 2
p{3n +0(n%)) = 3Pn + pO(n”) (6.51)

operations, since each linear solver requires %ns + O(n2) operations; cf. Lemma 6.2.

However, the most expensive part of x; = linear_solve_cholesky(A,b;) is comput-
ing the Cholesky decomposition of the matrix A, which dominates the cost of the
subsequent forward substitution and backward substitution. Thus, an efficient way
of solving the linear systems (6.50) is to compute the Cholesky factor U of A only
once, outside the “for” loop, and then do the forward and backward substitutions for
solving each linear system inside the “for” loop; see the pseudocode from Table 6.3
for details.

Recall that both the forward substitution forward_subst(U*,b;) and the backward
substitution backward_subst(U, y) require n*+ O(n) operations; cf. (2.8) and (2.19).
Thus, the operation count for solving the p linear systems using the method from
Table 6.3 is

Sn® +O@?) + p(n? +0() + 0 +0(m) = zn’+2n’ + O() +pO(n),
which is smaller than %pn3 +pO(n?), the operation count required by solving the p
linear systems sequentially; see (6.51).

As an example of solving multiple systems corresponding to the same matrix, we
show how to efficiently compute the inverse of a symmetric positive definite matrix.
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Table 6.3: Solution of multiple linear systems corresponding to the same spd matrix

Input:
A = symmetric positive definite matrix of size n
b; = column vectors of size n, i =1:p

Output:
x; = solution to Ax; =b;,i=1:p

U = cholesky(A)
fori=1:p
y = forward_subst(U*, b;);
z; = backward_subst(U, y);
end

Let A be a symmetric positive definite matrix of size n, and let A7l =col(er)jer.n
be the column form of the inverse matrix of A. Then, AA™' = I, where I =
col (ek),_,., is the identity matrix of size n. Using (1.11), we find that AATY =
col (Ack) oy, and therefore AA™" = I is equivalent to

Ack = ex, YVk=1:n,
which can be solved using the method from Table 6.3 as follows:

U = cholesky(A)
fork=1:n
y = forward_subst(U?, er)
¢ = backward _subst(U, y)
end
A7 = col (¢r) poyin

The operation count for computing the inverse matrix using this method is

El,)—n3+0(n2) + n(n®+0(n) + n®+0(n)) = gns + O(n®); (6.52)

see (10.89) from Section 10.2.3 for a proof of the last equality.

6.3 Optimal linear solvers for tridiagonal symmetric
positive definite matrices

Solving linear systems corresponding to tridiagonal symmetric positive definite ma-
trices is often required in financial applications, e.g., for the efficient implementation
of the cubic spline interpolation and for the finite difference solution of the Black-
Scholes PDE; see section 6.4 and the references from section 6.5. Note that a linear
system Az = b corresponding to a tridiagonal symmetric positive definite matrix A
can be solved by using a linear solver based on the Cholesky decomposition of A, or
by using a linear solver based on the LU decomposition of the matrix A.
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In this section, we show that, for tridiagonal symmetric positive definite matrices;
the LU solver is more efficient (i.e., has a smaller operation count) than the Cholesky
solver. .

Cholesky linear solvers for tridiagonal spd matrices.

Let A be an n x n tridiagonal symmetric positive definite matrix. The linear sys-
tem Az = b can be solved using the Cholesky decomposition based solver z = lin-
ear-solve_cholesky(A,b) from Table 6.2. For an efficient implementation, the Cholesky
decomposition, forward substitution, and backward substitution routines from Ta-
ble 6.2 are replaced by the specialized routines for tridiagonal matrices as seén below.

We begin by showing that the Cholesky factor of a tridiagonal symmetric posi-
tive definite matrix is an upper triangular bidiagonal matrix by analyzing how the
Cholesky decomposition simplifies for tridiagonal matrices.®

Since the symmetric positive definite matrix A is tridiagonal,* note that

AGE) = 0, V1<jk<nwith|j—kl >2 (6.53)

A(Gi+1) = A(i+1,4), Yi=1:(n—1).

Let U be the Cholesky factor of A. We will show that U is an upper triangular
bidiagonal matrix, i.e., the only entries of U that can be nonzero are the main diagonal
entries U(4,%), for ¢ = 1 : n, and the upper diagonal entries U(4,4 + 1), for i = 1 :
(n—1).

Following step by step the Cholesky decomposition algorithm from section 6.1.1,
we compute U(1,1) = /A(1,1) and the first row of U as U(1,k) = -3%’:’%, for all
k = 2 :n. Note that A(1,k) = 0if 3 < k < n since A is a tridiagonal matrix; cf.
(6.53). Then, U(1,k) = 0if 3 < k < n, and therefore the only possible nonzero
entries from the first row of U correspond to an upper triangular bidiagonal form for
U.

Moreover, since U(1,2 :n) = (U(1,2) 0 ... 0), it follows that -

U(1,2)

0.
U,2:n)'U1,2:n) = , (U(1,2) 0 ... 0)

0

(U(1,2)* o 0
0 0 0
0 0 ... 0

Thus, updating the (n — 1) x (n — 1) lower right part of A as in (6.28), i.e.,

A2:n,2:n) = A(2:n,2:n) — (U(1,2:n)'U(1,2:n),

3More generally, the Cholesky factor of a banded matrix of band m is also banded of band m;
see an exercise from the end of this chapter and Stefanica [38] for details.

4Note that a sufficient, although not necessary, condition for the tridiagonal symmetric matrix
A to be symmetric positive definite is |A(4,4)] > A4, — 1)| + |A(4, s+ 1) forall i = 2: (n — 1),
A1, 1)} > JA(1,2)|, and |A(n,n)] > |A(n,n — 1)|, since in this case A is strictly diagonally
dominant, and any strictly diagonally dominant symmetric matrix is symmetric positive definite;
see Theorem 5.7.
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only involves changing the value of A(2,2) to

which preserves the tridiagonal structure of the matrix A(2:n,2: n).

The tridiagonal structure of the updated part of A and the bidiagonal structure
of U will be further preserved as every row of U is computed.

For example, assuming that the updated form A(i : m,i : n) of the matrix A
is tridiagonal after ¢ — 1 rows of U are computed, the i-th row of U is computed
as follows: U(i,i) = \/A(i,5) and U(i,k) = 4%, for all k = (i +1) : h. Since
A(i : m,% : m) is tridiagonal, it follows that A(4,k) = 0 if 4+ 2 < k < n, and therefore

Ui, k) =0, Vi+2<k<n.

Thus, the only possible nonzero entries from the i—th row of U correspond to an
upper triangular bidiagonal form for U.

Moreover, since U(i,2+ 1:n) = (U(3,i+1) 0 ... 0), we find that
Ui,i+1)
0
U,i+1:0)UGi+1:n) = (UG,i+1) 0 ... 0)
0
(U@E,i+1)* 0 ... 0
0 0 ... O
0 0 ... 0

Thus, updating the (n — 1) x (n — 1) lower right part of A as follows as in (6.29), i.e.,
AG+1:ni+1:n) = AG+1:n,i+1:n) — (U@G,i+1:0)Ud,i+1:n),
involves only changing the value of A(% + 1; i+ 1) to
AG+1,i+1) = AG+1,i+1) — (UG, 5+ 1)),

which preserves the tridiagonal structure of the updated (n —¢ — 1) X {(n —i — 1)
matrix A(t+1:n,i4+1:n).

The Cholesky decomposition routine from Table 6.1 simplifies to the pseudocode
from Table 6.4 for tridiagonal symmetric positive definite matrices.

The operation count for the tridiagonal Cholesky decomposition from Table 6.4
is 4n — 3 operations: in each step of the “for” loop
fori=1:(n—-1)
fori=1:(n—-1) ‘

U(i, i) = +/A®G,3); U@, i+ 1) = A(4,1+ 1)/U®,4);

AG+1,54+1) = A@G+1,i+1) U@, + 1)%
end

we perform 4 operations, plus one more operation for computing /A(n,n), for a
total number of operations of

dn-1)+1 = 4n-3. (6.54)
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Table 6.4: Cholesky decomposition for tridiagonal spd matrices

Function Call:
U= choleskytridiag_spd(A)

Input:
A = tridiagonal symmetric positive definite matrix of size n

Output:
U = upper triangular bidiagonal matrix such that /' = A

fori=1:(n=1)
U(3,1) = \/A(4,4); U(i,i+1) = A(s,i+ 1)/U4,4);
A+ 10+ 1) = A(i+ 1,0+ 1) - U(,i + 1)%

end

U(n,n) = /A(m,n) | |

Thus, if A is a tridiagonal symmetric positive definite matrix, the Cholesky de-
composition U/ = cholesky(A4) from the linear solver routine from Table 6.2 can be
replaced by the tridiagonal solver U = cholesky_tridiag spd(A4) from Table 6.4.

Moreover, since the matrix Ut is lower triangular bidiagonal, the forward sub-
stitution y = forward_subst(U/ *,b) from Table 6.2 can be replaced by the forward
substitution y = forward_subst_bidiag(U*, b), see Table 2.2, and, since the matrix U
is upper triangular bidiagonal, the backward substitution z = backward_subst(U, y)
from Table 6.2 can be replaced by 2 = backward_subst_bidiag(U, y), see Table 2.4.

The resulting routine for solving linear systems corresponding to tridiagonal sym-
metric positive definite matrices using the Cholesky decomposition can be found in
Table 6.5.

Table 6.5: Tridiagonal spd linear solver using Cholesky decomposition

Function Call:
z= linear_solve_cholesky_tridiag_spd(A,b)

Input:
A = tridiagonal symmetric positive definite matrix of size n
b = column vector of size n

Output:

z = solution to Az = b

U = cholesky_tridiag_spd(A); // Cholesky decomposition of A
y = forward_subst_bidiag(U*, b); // solve Uty =p

* = backward. subst_bidiag(U, y); // solve Uz =y

The operation count for the pseudocode from Table 6.5 is as follows:

® 4n — 3 for the Cholesky decomposition of A; cf. (6.54);
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e 3n — 2 for the forward substitution for solving Uty = b; cf. (2.10);
e 31 — 2 for the backward substitution for solving Uz = y; cf. (2.20),

for a total operation count of
(4n-3)+@Bn—-2)+0Bn-2) = 10n -7 = 10n + O(1);
see (10.77) from Section 10.2.3 for a proof of the last equality.

LU linear solvers for tridiagonal spd matrices.

Recall from Sylvester’s Criterion (Theorem 5.8) that all the principal minors of a
symmetric positive definite matrix are positive. Then, it follows from Theorem 2.1
that the tridiagonal symmetric positive definite matrix A has an LU decomposition
without pivoting, and therefore the linear system Az = b can be solved using the
solver linear_solve_LU no_pivoting-tridiag from Table 2.8; see also the explicit form -
from Table 2.9. The corresponding routines can be found® in Table 6.6, and, in
explicit form, in Table 6.7.

Table 6.6: Tridiagonal spd linear solver using LU decomposition

Function Call:
z = linear_solve_LU _tridiag-spd(A4,b)

Input:
A = tridiagonal symmetric positive definite matrix of size n
b = column vector of size n

Output:

2 = solution to Az =b

(L, U] = lu_no_pivoting_tridiag(A); // LU decomposition of A
y = forward. subst_bidiag(L, b); // solve Ly =b

z = backward_subst_bidiag(U, y}; ]/ solve Uz =y

As shown in section 2.5.1, the operation count for the LU linear solver from
Table 6.7 is 8n + O(1), which is an improvement over the 101+ O(1) operation count
for the Cholesky linear solver from Table 6.5. ‘

We conclude that the efficient way to solve a linear system corresponding to a
tridiagonal symmetric positive definite matrix is by using the LU decomposition
solver from Table 6.6 or Table 6.7, with an operation count of

8n + O(1). (6.55)

5Note that the matrix U from the pseudocodes from Tables 6.6 and 6.7 is not the Cholesky
factor of the matrix A, but the U factor from the LU decomposition without pivoting of A.




6.4. EFFICIENT IMPLEMENTATION OF THE CUBIC SPLINE
INTERPOLATION C

Table 6.7: Explicit tridiagonal spd linear solver with LU decomposition
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Function Call:
x = linear_solve_LU _tridiag-spd(A,b)

Input:
A = tridiagonal symmetric positive definite matrix of size n
b = column vector of size n

Output:
z = solution to Az =15

fori=1:(n—-1)
L(i,4) = 1, L(i 4 1,8) = A(i + 1,4) JA(3,4);
Ui, 4) = A(,4); Uiy + 1) = A(i,7 + 1);
AG+1,5+1) = AG+ 1,i+1) = L(i + 1,9 UG, + 1);

end
L{n,n) =1; U(n,n) = A(n,n); // LU decomposition of A
z(1) = b(1);
forj=2:n
2(j) = b(j) — L(j,5 — D)=(j — 1); ,
end // forward substitution for Ly = b

z(n) = FH&;
forj=(m-1):1 ‘
z(j) = y(J)—U(J,(Jj-;l))Z(J+1);

end // backward substitution for Uz = y

6.4 Efficient implementation of the cubic spline
interpolation

Recall from section 2.8 that the natural cubic spline interpolation requires finding a

function f : [zo, zn] — R such that

(1) f(z:) =vi, for ¢ =0:n, where 2o < 21 < ... < Tn;

(ii) f(x) is a cubic polynomial on each interval [z;—1,2;], for i =1 : n;
(iii) f”(z) exists and is continuous on [xo, z,];

(iv) f1'(wo) = fi/(zn) = 0.

In other words, the natural cubic spline interpolation requires finding a function

f(z) of the form
f(@) = fil) = ai+bw+cz®+dix®, Vaios <ax<az, Vi=1: n,
such that

filxamt) = v, Vi=1:mn;
filzs) = vy, Vi=1:n;
filzs) = fipa(z), Vi=1:(n-1);

(6.56)

(6.57)
(6.58)
(6.59)
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Nz = fhaz), Vi=1:(n—1); (6.60)

fil(xo) = falza) = 0. (6.61)

In section 2.8, we found the unique values of ai, bs, ¢i, di, i = 1 : n, satisfying the
constraints (6.57-6.61) by solving a linear system corresponding to a 4n x 4n banded
matrix of band 4, see (2.82), using an LU decomposition based linear solver.

The efficient solution of the natural cubic spline interpolation only requires solving
a linear system corresponding to an (n — 1) x (n — 1) tridiagonal symmetric positive
definite matrix. This can be done using an LU linear solver for tridiagonal symmetric
positive definite matrices, with a computational cost of 8n + O(1) operations; see
section 6.3.

For every node x;, denote by w; the value of the second derivative of f at x, i.e.,
F'(zs) = ws, for i = 0 : n. While it follows from (6.61) that wo = wy = 0, the
values of w; are not known a priori for 4 = 1 : n — 1. The conditions (6.57-6.61) are
equivalent to

Sfilim1) = via, Vi=1:m; (6.62)
filzs) = w4 Vi=1:m; (6.63)
fil@ic1) = wio1, Yi=1l:in; (6.64)
filw) = wi, Vi=1l:in (6.65)

wo = Wn = 0; (6.66)
fl(z) = filz), Vi=1:(n-1). (6.67)

The efficient implementation of the natural cubic spline interpolation is based on
solving for the 4n coefficients as, b, ¢i, di, i =1: 7, in terms of wi, i = 1: (n—1),
by using the 4n conditions (6.62-6.65), and then use the n — 1 conditions given by
(6.67) to solve for the n — 1 unknowns w;, i = 1:(n—1).

Note that (6.62-6.65) can be written as follows:

a; +biti—1+ cim?_l +dizd, = w1, Vi=l:m (6.68)
ai + bizs + cimt + digy = v, Vi=1l:m; (6.69)

9% +6dszi_1 = wi—1, Vi=1l:n (6.70)

2 +6diz; = wi, Vi=1l:n. (6.71)

From (6.70) and (6.71), we obtain that

Wi—1Li — WiTLi—1

c; = m, Vi=1: n; (672)
Wy — Wi—1 .
di — — Vi=1:!n. .
6 — 1) i n (6.73)
Let
Gic1 = Vi1 — eiTe | — dim?_l, Vi=1:m (6.74)
re = v— s —day, Yi=1:n. (6.75)

Then, (6.68) and (6.69) can be written as

a; +bizio1 = Gi-1, Vi=1:n;

a; + bixs ry, Vi=1:n,

i
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and therefore

Qi1%s — 7551

ap = LTIl v 1n, : (6.76)
Ti — Ti—1 .
b= THLyi=1in (6.77)
Ti — Ti—1

Summarizing, given v; and w;, ¢ = 0 : n, we obtain ¢; and d;, ¢ = 1 : n, from
(6.72) and (6.73), and use them to compute r; and g;—1, ¢ = 1 : n, from (6.74) and
(6.75). In turn, 7; and gi—1, ¢ = 1 : n, are used to obtain a; and b;, ¢ =1 ; n, from
(6.76) and (6.77).

Since wo = wn = 0, see (6.66), we are left with finding the values of w;, for
i=1:{(n—1). To do so, we use the condition (6.67) for the continuity of the first
derivative, i.e., fi(z:) = fiy1(xs), for all 4 = 1 : (n — 1), which can be written as

bi + 2cix; + 361?;:1)12 = bip1 + 2¢i+12s + 3di+1$?, Vi=1:(n—1); (6.78)

From (6.77) and using (6.74) and (6.75), we obtain that

Vi — Vi—1 2 2
by = —T Ci(ivi + $i—1) — di(xy Hxizio1 + m'z‘—1)§
Ti — Ti—1
Vit+1l — Vs 2 2
biv1 = —/——— — cip1(@ep1 +xs) — dig1(@ipy + Tip1xs + 27),
Titl — T4

foralli=1:(n — 1), and therefore

b; + 2¢cizi + 3diazf

Vi — Vie
= Loy ci(®s — xi-1) + di(QfL’? — Li&i-1 *93?4)

Ti — Ti-1
Vi — Vi

= T b e - wie1) 4 dims — 1) (2@ 4 @ie1);
Tg — Ti—1
biv1 + 2ciy1s + 3di+1$?
Vit1 — U

= M i @i — i) — diga (€l Tipms — 227)
Tit1 — Ti
Vipl — Vg

= ——— = ep1(@it1 — i) — dit1(zitr — T){@iga + 2),
Tit1 — X4

for all ¢ =1: (n— 1), which can be written using (6.72) and (6.73) in terms of wj,
¢ =0:n, as follows: ’

bi + 2cix; + 3dx?

Ui — Vi1 + Wi—1T4 — Wil4~1 + (wi ~ wial)(2xi + l‘i—l)
Ty — Ti-1 2 6
Vg — Vi—1 Xi — Ti—1 Xi —Ti—1
= T wil e W —1——1-—; (6.79)
Ti — Li-1 6 . 3
2 .
bit1 + 2ci1xi + 3diax;
Vil — U WiTig1 — Wil @i (Witr — Wi)(2Tig1 + Ti)
Ti41 — T4 2 ( 6
Vil — Y4 Litl — T4 Titl — %
= o LI ws; Cas o Wit1 ——14_—2, (680)
Tit+1l — X4 3 6
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foralli=1:(n—1).
From (6.79) and (6.80), we obtain that the constraints (6.78) are equivalent to

Vi — Vi1 Ti— Ti—1 XTi — Ti—1
+ wi-1 + ws
Ti — Tie 6 3
Vigl — Vs Tit1— T4 Ti41 — T4
= i — Wi41
Ti41 — T4 3 6 !

which can be written as

i — XLi—-1 Ti41 — Ti—1 Titl — X4 Vit1 — Vs Vi — Vi—1

Wi—1 ——— + Wi ————— + Wil = - y
6 3 . 6 Ti+1 — T4 Ti — Ti—1

(6.81)

foralli=1:(n-1).

After multiplication by 6, the equations (6.81) can be expressed as the linear

system
Mw = 2z, . (6.82)

where w = (wW;)i=1:n—1 is the vector of unknowns, z is the (n — 1) x 1 vector given by

. Vit1 — Vi Ug — Uil .
z{(i) = 6 - Vi=1:(n-1),
@ (.'Bi+1 — X4 mi_mi—1>, ! ( )

and M is the (n — 1) x (n — 1) matrix given by

M(i, 2) = 2(371'4_1 — a:i_l), Vi=1: (n — l); (6.83)
M@, i4+1) = zyp1—mi, Vi=1: (n—2); . (6.84)
MG,i—=1) = 2i—mi1, Yi=2:(n—1). (6.85)

The matrix M is tridiagonal. Note that M is also symmetric, since, from (6.84)
and (6.85), we find that

M@, i+1) = zip1—as = M(@E+1,7), Vi=1:(n—2).
Moreover, the matrix M is strictly diagonally dominant, since

MQ,1) =2(z2 —20) > z2—z1 = M(1,2);
Mn—-1n—-1)=2(zn —Tn-2) > Tp-1—Tn-2=M(n-1,n-2);

|M@Gi— 1]+ M@+ 1) = zip1 — @1 < 2(Tig1 —24-1) = M(5,1),

for all i =2: (n— 2); cf. (6.83-6.85).

From Theorem 5.7, we conclude that the matrix M is a tridiagonal symmetric
positive definite matrix. Thus, the linear system Mw = z from (6.82) can be solved
efficiently using the LU tridiagonal spd solver from Table 6.6, i.e.,

w = linear_solve_.LU tridiag_spd(M, z).

The pseudocode for the efficient implementation of the natural cubic spline inter-
polation can be found in Table 6.8.
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Table 6.8: Efficient implementation of the natural cubic spline interpolation

Input:
Z; = interpolation nodes, i = 0:n
v; = interpolation values, i =0:n

Output:
as, bs, ¢i, di = cubic polynomials coefficients, i = 1: 7

Tip1—%4 Ti—Li1

// compute vector z
fori=1:(n—1), M(,i) =241 — x4-1); end
fori=1:(n—2), M(5,i+1) =1 —x:; end
fori=2:(n—-1), M(@i,i—1)=2;—xzi_1; end

// compute tridiagonal matrix M
w = linear.solve_LU _tridiag spd(M,z); wo = 0; w, =0
fori=1:n
Wi—1Bs —WiTi—1 d — Wi —Wi—1 _,

2zi—zi_1) T B(zi-zy—1))?

fori=1: (n — 1), z(z) -6 (ve;+1—'ui . ’Ui—'vz‘-—l); end

G =
end
fori=1:n

Qim1 = Vim1 — Cii 1 — dixi_y; T = v — Gixd — dizd,

end
fori=1:n
o L 1B Ty, o i1,
ai = XLy _1 7. bl T T
end

6.4.1 Efficient cubic spline interpolation for zero rate curves

To illustrate the efficiency of the natural cubic spline interpolation compared to
regular cubic spline interpolation, we revisit the example from section 2.8.1 of finding
a continuous zero rate curve from values of the zero rate for discrete times.

Denote by 7(0,t) the zero rate corresponding to time ¢, and assume that the
following zero rates are known:

2 6
r(0,0) = 0.0059, T (0, 1—2> = 0.0065; r (0, —1—5) = 0.0085;

r(0,1) = 0.0105; r <0, %) = 0.0120.

Assume that (0, ¢) is a cubic polynomial on each of the intervals [O, 12—2], [—125, 16—2],
[,1], and [1, 2]. Following the pseudocode from Table 6.8, we solve the linear

system (6.82) corresponding to the 3 x 3 matrix

1 03333 0
M = | 03333 1.6667 0.5 (6.86)
0 05  2.3333
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to obtain the values® 0

—0.0171
w = | —0.0026 (6.87)
—0.0039
0

for the second order derivatives of r(0, ) with respect to t at the times 0, Z, 16—2, 1,
and 22. We then use the formulas (6.72), (6.73), (6.76), and (6.77) to compute the
coefficients as, bi, ci, di, 4 = 1 : 4, of the cubic polynomials that are equal to the zero
rate curve 7(0,t) on the four intervals above; see the “for” loops at the end of the
pseudocode from Table 6.8.

The resulting zero rate curve is the same as the zero rate curve from (2.99), ie.,
0.005 + 0.0095t — 0.0171t%, if 0<t< &
r(0,1) = 0.0049 + 0.0115¢ — 0.0122t% 4 0.0073t, if % <t< S
T 0.0059 + 0.0057¢ — 0.0006£2 — 0.0005¢%, if 5 <t<1;
0.0044 -+ 0.01¢ — 0.0049¢2 + 0.001¢%, if 1<t< 2

and can then be used to value other interest rate instruments with maturity less than
20 months.

Note that using the natural cubic spline interpolation required solving a 3 x 3
linear system, while the regular cubic spline interpolation required solving a 16 x 16
linear system; see (6.86) and (2.97-2.98), respectively.

6.5 References.

A comprehensive analysis of the stability of the Cholesky decomposition algorithm
can be found in Higham [20].

A Cholesky-type decomposition of less practical importance also exists for sym-
metric positive semidefinite matrices; see Higham [19] for more details:

Let A be an n X n symmetric positive semidefinite matrix of rank r (i.e., with eigen-
value 0 of multiplicity n — ). Then, there exists a permutation matrix P such that
¢ U B

par = [0 2],

where U is an r X 7 upper triangular matrix with positive elements on the main
diagonal, B is an r X (n — r) matrix, and 0 and O on the second row above denote

matrices with all entries equal to 0 and of sizes (n —7) x r and (n —7) X (n—1),
respectively. :

Different tridiagonal linear systems solvers can be found in Hirsa {21]. Detailed
presentations of the finite difference solution to the heat equation corresponding to
the Black—Scholes PDE and the solution of tridiagonal symmetric positive linear
systems can be found in Andersen and Piterbarg (3] and Wilmott [45].

SNote that the first and last values of w come from the natural cubic spline interpolation
assumption, while the other three values of w from (6.87) come from solving the linear system
(6.82).
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The efficient implementation of the cubic spline interpolation, complete with pseu-
docodes can be found in the “Numerical Recipes” compendium by Press et al. {32].
Other spline interpolation methods are surveyed in Andersen and Piterbarg [3]. Ex-
amples of cubic splines for financial applications are presented in Alexander [1] and
Neftci [30].
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Exercises

. Let

A= (_22 *52>.

(i) Find a 2 X 2 matrix M such that A = M 2

(ii) Find a 2 X 2 matrix M such that A = MM".

(4 12
.LetA_(12 34 )

(i) Show that the matrix A is symmetric positive definite.

(i) Find a 2 X 2 matrix B such that 4 = B*.

(iii) Find a 2 x 2 upper triangular matrix U such that A= U*‘U.
1 —-0.2 08

Let A= —-0.2 2 0.3
0.8 03 1.1

(i) Show that the matrix A is weakly diagonally dominated, and therefore
symmetric positive semidefinite.

(ii) Use Sylvester’s criterion to show that the matrix A is symmetric positive
definite.

. Let A be a symmetric positive definite matrix, and let U be the Cholesky factor

of A. If V is an upper triangular matrix such that A = V'V, show that there -
exists a diagonal matrix D whose entries on the main diagonal are either —1
or 1 such that V = DU.

Let By be the following N x N symmetric positive definite matrix:

2 -1 ... 0

By = | 4 ] (6.88)

0 ... -1 2

Let Cy be an N x (N + 1) matrix with
On(ii) = 1, Yi=1:N;
On(ii+1) = =1, Vi=1:N,

and with all the other entries equal to O.

Show that By = CnC%. Why is this not the Cholesky decomposition of the
matrix By?



6.6. EXERCISES - 189

6. Let By be the N x N tridiagonal- symmetric positive definite matrix given
by (6.88). Show that the Cholesky factor Uy of the matrix By is the upper
triangular bidiagonal matrix given by

Un(i,i) =  Vi=1:N; (6.89)

Un(iyi+1) = —4f- Vi=1:(N-1). (6.90)

7. Let By be the N x N tridiagonal symmetric positive definite matrix given by
(6.88), and let Un be the Cholesky factor of By given by (6.89-6.90).

(i) Show that the solution to a linear system Byx = b, where b and z are N x 1
column vectors can be obtained by using the explicit pseudocode below:

Function Call:
x = linear.solve.cholesky_B_N(b)

Input:
b= N x1 column vector

Output:
z = solution to Bz = b

y(1) = b(l)
for i = 2 N
y(l) — b(i) + y(i—1) Vv (1—1)/4
V1) /4

end
Z(N) = y(N,I\}—rlﬁ
fori=(N-1):1
2(i) = YO+ 2T
V1) /4

(ii) What is the aperation count for the pseudocode above, and how does it
compare to 8n + O(1), the operation count for the optimal linear solver for
tridiagonal symmetric positive definite matrices?

8. Let By be the N x N tridiagonal symmetric positive definite matrix given by
(6.88). Show that the LU factors L and U of the matrix By are the lower
triangular bidiagonal matrix and the upper triangular bidiagonal matrix given
by ‘

L(,d) =1, Vi=1:N; L(i+1,i):—ﬁ1—, Vi=1:(N—1); (6.91)
i+1

UGi,i) =25, Vi=1:N; UGitl)=-1, Vi=1:(N-1). (692




190

9.

10.

11.
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Let By be the N x N tridiagonal symmetric positive definite matrix given by
(6.88), and let L and U be the LU factors of By given by (6.91-6.92).

(i) Show that the solution to a linear system Byx = b, where band x are N X 1
column vectors can be obtained by using the explicit pseudocode below:

Function Call:
z = linear.solve lu.B_N(b)

Input:
b= N X 1 column vector

Output:
z = solution to Byxz =b

y(1) =b(1)
fori=2:N '

y() = b(i) + E=eli=d)
end
z(N) = N]\Z;+]\1[
fori=(N—-1):1

o i(y(d)Fe(idl
x(i) = _L.Tﬂ(_))

end

(ii) What is the operation count for the pseudocode above, and how does it
compare to 8n 4+ O(1), the operation count for the optimal linear solver for
tridiagonal symmetric positive definite matrices?

Write an explicit optimal pseudocode for solving linear systems corresponding
to the same tridiagonal symmetric positive definite matrix. In other words,
write a pseudocode for solving p linear systems Ax; = b;, for i = 1 : p, where
A is an n x n tridiagonal symmetric positive definite matrix, by using the
explicit solver linear_solve_ LU _tridiag_spd from Table 6.6 and the method from
Table 6.3. What is the operation count for solving the p linear systems?

Write the pseudocode for the Cholesky decomposition of symmetric posit‘i'lve
definite banded matrices of band m. What is the corresponding operation
count?

Hint: Use (without proving) the fact that the Cholesky factor of a symmetric
positive definite banded matrix of band m is a banded upper triangular matrix
of band m.

What is the operation count for solving a linear system corresponding to a
symmetric positive definite banded matrix of band m using a Cholesky linear
solver?
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13. The following discount factors were obtained from market data:

Date Discount Factor
2 months 0.9980
5 months 0.9935
11 months 0.9820
15 months 0.9775

The overnight rate is 0.75%.

(i) What are the corresponding 2 months, 5 months, 11 months and 15 months
zero rates?

(ii) What is the tridiagonal system that must be solved in the efficient imple-
mentation of the natural cubic spline interpolation for finding the zero rate
curve for all times less than 15 months?

(iii) Use the efficient implementation of the natural cubic spline interpolation
to find a zero rate curve for all times less than 15 months matching the discount
factors above.

(iv) Find the value of a 14 months quarterly coupon bond with 2.5% coupon
rate.

Note: A quarterly coupon bond with face value $100, coupon rate C, and
maturity 7' pays the holder of the bond a coupon payment equal to % - 100

every three months, except at maturity. The final payment at maturity T' is
equal to the face value of the bond plus one coupon payment, i.e., 100+ —(47-100.






Chapter 7

Covariance and correlation matrices. Linear
Transformation Property. Multivariate normal
random variables.

Covariance and correlation matrices. Positive definiteness of covariance and correla-
tion matrices.

Covariance and correlation matrix estimation from time series data.

Linear Transformation Property.

Necessary and sufficient conditions for covariance and correlation matrices.
Finding normal random variables with a given covariance or correlation matrix.
Monte Carlo simulation for basket option pricing.

Multivariate normal random variables.

Multivariate random variables formulation for covariance and correlation matrices.

7.1 Covariance and correlation matrices

Let X1, X2, ..., X, be n nonconstant random variables on the same probability
space. Denote by u; and o, # 0 the mean and the standard deviation of X;, respec-
tively, for i = 1 : n. The variance of X; is

of = var(Xy) = E[(X:—pm)?], Vi=1:n.

The covariance and the correlation of the random variables X; and X are

cov(X;, Xi) = E[(X —p)(Xe — )], V1< G,k <mg (7.1)
corr( X, Xi) M, V1<j,k<n. (7.2)
Jj0k
Note that
cov(Xi, X;) = var(Xy), V1<i<m (7.3)
cov(X;, Xik) = cov(Xk,X;), V1<gk<n (7.4)

193
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corr(X;, X;) = 1, V1<i<my (7.5)
corr{X;, Xx) = corr(Xk,X;), V1<jk<n (7.6)
-1 < corr(X;,Xi) < 1, V1<j,k<n. (7.7

For a proof of (7.7), see an exercise at the end of this chapter.

Definition 7.1. The covariance matriz X x of the random variables X1, Xa, ..., X,
i the n X n matriz given by

Ex(j, k) = cov(X;,Xk), V1<, k<n,
where cov(X;, Xir) denotes the covariance of the random variables X; and Xj.
The covariance matrix 3x is symmetric, since
Tx(5,k) = cov(X;, Xi) = cov(Xw, X;) = Zx(k,j), V1<4,k<n; (7.8)

cf. (7.4). Also,
Yx(4,7) = var(X;), Vi=1:n, (7.9)
since cov(X;, Xi) = var(X;) for all i = 1: n; cf. (7.3).

Definition 7.2. The correlation matriz Qx of the random variables X1, Xo, ...
Xn is the n X n matriz given by

2

QX(jy k) = COTde»Xk)y V1i<j,k<n,

where corr(X;, Xi) denotes the correlation between the random variables X; and Xy.
The correlation matrix Qx is symmetric, since

Qx(j,k) = corr(X;, Xx) = corr(Xi, X;) = Qx(k,j), V1<jk<n; (7.10)
cf. (7.6). Also,

Ox(i,7) = 1, Vi=1:n, (7.11)

since, corr(Xs, X;) =1 for all 4 =1:n; cf. (7.5).

For example, the covariance matrix and the correlation matrix of two random vari-

ables X1 and X2 with mean and standard deviation p1, o1, and p2, o2, respectively,
and with correlation p1,2, are '

2
Sk = < or - oLpLe ); (7.12)
010201,2 (23]
_ 1 ;e
Ox = (pm & ) (7.13)

The covariance matrix and the correlation matrix of three random variables X1,
X2, X3 with mean and variance p1, o1; u2, o2; and us, os, respectively, and with
correlations corr(Xi, X2) = p1,2, corr(X1, X3) = p1,3, and corr( Xz, X3) = pa3 are

U% g102p01,2 010301,3
Yix = 0102P1,2 o? 020302,3 ; (7.14)
010301,3 0203023 o}
1 p12 pis
Qx = prz 1 p2s |, (7.15)

p1,3  P2,3 1
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Lemma 7.1. Let ¥x.and Qx be the covariance and the correlation matriz of n
nonconstant random variables X1, Xo, ..., X,,. Let oy # 0 be the standard deviation
of X5,i=1:n. .

(i) The covariance matriz Xx and the correlation matriz Qx are related as follows:
EX = DUXQX‘DUX? (716)

where Do, = diag(o:)i=1:n-

(ii) The correlation matriz Qx s uniquely determined in terms of the covariance
matriz Xx as follows:

Qx = (DUX)ﬁIEX(DUX)~1> (7'17)

where (Dax)—l = diag (—L>i=1:n'

T

Proof. (i) If Dy = diag (d;”) . and Do = diag (d,(cz))
j=1n
of size n, it follows from (1.90) of Lemma 1.10 that

are diagonal matrices
k=1:n .

(D1ADs)(5, k) = dVdD AG, k), Y 1<4,k<n. (7.18)

Using (7.18) for A = Qx and for Dy = Dy = Dyy = diag(:)i=1:n, we find that

(Dox % Doy )(4, k) = 040104, k)
= ojorcorr(X;, Xi) = cov(X;, Xk)
= Zx(j,k), V1<j,k<n, (7.19)

since cov(X;, Xi) = ojorcorr(Xy;, Xi); cf. (7.2). From (7.19), we conclude that
Ex - Do—xQngx.

(ii) Since 0; # 0 for all 4 = 1 : n, the matrix Dy = diag(c:)i=1.n is nonsingular
and its inverse is (Doy )~ = diag (;}—) ; see (1.94). Then, by multiplying (7.16)
t/i=lin
from the left and from the right by (Do )™, we obtain that
(Dox)mlzx(DO’x)_l = ((Dax)_lpax) Qx (Dax(Dox)Hl) = Qx.
O

Let £x and Qx be the covariance matrix and the correlation matrix of two random
variables X; and X3 given by (7.12) and (7.13), respectively. Then,

o = o 0 1 pie2 op 0
* 7 0 o2 pr2 1 0 o2 :
. o1 0 o, 0 ).
- ( - ) Qx( w0 > (7.20)

L 9 1 90
Qx = <‘61 L) Ex<‘701 .l.) (7.21)

o2 ag

Note that (7.20) and (7.21) are the special cases for 2 x 2 matrices of (7.16) and
(7.17), respectively.
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Let Tx and Qx be the covariance matrix and the correlation matrix of three
random variables X1, X2, X3 given by (7.15) and (7.15), respectively. Then,

o1 0 0 1 pL2 P13 cr 0 O
Ex = 0 az 0 P1,2 1 p2,3 0 a2 0
0 0 03 P1,3 P23 1 0 0 g3
a1 0 0 g1 0 0
= 0 o2 O Qx 0 o2 O ; (7.22)
0 0 o3 0 0 o3
= 0 0 = 0 0
Qx = 0 &~ 0 x| 0 & 0 |. (7.23)
I 0 0 =

Note that (7.22) and (7.23) are the special cases for 3 x 3 matrices of (7.16) and
(7.17), respectively.

Examples: (i) Consider three random variables X1, X, X3 with covariance matrix

9 2 -6
Yx = 2 4 -1 7.
-6 -1 16

The standard deviations of X1, X2, and X3 are

o1 =V2x(1,1) =3, o2=+v2x(2,2)=2, and o3= Yx(3,3) =4,

respectively. From (7.23), we find that the correlation matrix of X1, X2, X3 is

i 9 2 -6
Qx = 2 4 -1
‘_ —6 -1 16 0
1 -1
_ ( O )
= . 5 |-
LR
(ii) Consider three random variables X1, X2, X3 with correlation matrix
1 0.5 —0.25
Ox = 05 1 025 |,
—-0.25 0.25 1

and with standard deviations o1 = 4, 02 = 1, and o3 = 6. From (7.22), we find that
the covariance matrix of X1, X2, X3 is

0

0

6

4 0 0 1 0.5 -0.25 4 0
0 1 0 0.5 1 0.25 0 1
0 0 6 —0.25 0.25 1 00

o owli=
OI= O

O wl-
OO

0
0
1
4

= O O

— o

Ex

I} I
e
L5
oo
1
w |
oo
~—

O
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We note that, if the correlation matrix of the random variables X L Xe, X
is given, the covariance matrix of X1, Xa, ..., X,, is not uniquely determined.
Ezample: Let X1, X2 random variables with covariance matrix Yx = :13 :)3 ) ,

and let Y7, Y2 random variables with covariance matrix Sy = ( _12 -2 )

16
Then, 0(X1) = /Ex(1,1) = 2 and 0(X2) = /Ex(2,2) = 3, and, from (7.21), it

follows that the correlation matrix of X7 and X» is

. 20 4 -3 Lo _ 1 -05
= (5 0)( S P)(8 1) - (s )

Similarly, (Y1) = /2v(1,1) = 1 and o(¥2) = /Ev(2,2) = 4, and, from (7.21), it
follows that the correlation matrix of Y7 and Y3 is

. 1 —-0.5

- ~0.5 1 ’

e (595 )

Thus, X1, X2 and Y1, Y2 have the same correlation matrix, since Qx = Qv,
although they have different covariance matrices, since ¥ix # Zv. O

w= O
= O

Lemma 7.2. The correlation matriz of random variables with standard deviation
equal to 1 is equal to the covariance matriz of the random variables.

In other words, let ¥x and Qx be the covariance and correlation matriz of the
random variables X1, X2, ..., Xy, respectively. If Yx(i,4) = 1 for alli=1:n, then
EX = Qx.

Proof. Recall from (7.9) that %x (4,1) = var(X;) = o, for all i = 1 : n. If Xx(i,) =
1, it follows that o; =1 for all ¢ = 1 : n. Then, Doy = diag(os)i=1.n = I, and, from
(7.16), we obtain that Qx = 2x. O

Note that the result of Lemma 7.2 can also be stated as follows: if all the entries
on the main diagonal of the covariance matrix of n random variables are equal to 1,
then the covariance matrix and the correlation matrix of the random variables are
equal.

Lemma 7.8. Let Ly be the covariance matriz of n random variables X1, Xo, ...,
Xn. Let ¢V = (c§1>)i;1m and C® = (02(2))1:1;” be two column vectors of size n.
Then,

n n
cov <Z < x,, chmxi) = (CMY'5xc® = (CP)zm,oW, (7.24)
i=1 =1
In particular, for CV = C® =C = (Cii=1:n, it follows from (7.24) that

var (Z ciXi> = C'uxC. (7.25)
i=1
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Proof. Let u; = B|X;], 4= 1:n. Let

Then,

v — Zc(l)X y@ — Zc(z)X

Y(l) Y(l) Zc(l) ,U«i);

Y® _ By®) Z (X, - )

Note that (7.24) is equivalent to

cov(Y®P, y®) =

By definition,

]

cov <Z c(l)X ZC(Z)X>
OV(Y(I) Y(2))
el(ym _ Y(l)]) (y(2> _ E[Y(m])]

E [(Zc(l) 1—)) <§n:c§2>(x -
{ Z e (X; ~lh)(Xk—/Mc)}

“) P E(X; — pi)(Xk — px)]

Z cg-l)cgf)cov(Xj, Xi)
1<j,k<n

S (b
1<5,k<n

(0(1))t2xc(2) ,

where, for the last equality, we used formula (10.19), i.e.,

ytAw = Z A(Ja k)wkyﬁ

1<j,k<n

for A= Sy and ¢ = C?, y = CW.
Thus, the first equality of (7.24) is proven.

To show that the second equality of (7.24) holds true as well, note that

(tcy

5x0®)" = (C?)'zc®

(C(l))tzxc@) — (0(2))t2x0(1).

— (0(2))t2x0(1) ,

(7.26)

(7.27)
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since the covariance matrix Yx is symmetric, i.e., L% = Sx.
Moreover, since (CV)!ExC@ e Ris a number, it follows that

((O“))tzxc@))t = (CDYizyC®, (7.28)
From (7.27) and (7.28), we conclude that
(O(l))tszW) = (C(z))tsz(l),

and therefore the second équality of (7.24) is proven.
By letting C = C® = C = (¢;)i=1.m in (7.24), we obtain that

var <§n: CiXi> = Ccov <§n: CiXi,Zn:Cz'XZ‘> = Ctzxc‘
i=1 = =

O

The formulas from Lemma 7.3 connecting the covariance and correlation matrix
of random variables, as well as the Linear Transformation Property from section 7.3,
can also be established by using matrix operations and notations for multivariate
random variables. For more details, see section 7.7.
Lemma 7.4. (i) Any covariance matriz is symmetric positive semidefinite.
(i) Any correlation matriz is symmetric positive semidefinite.
Proof. Let ¥x and Qx be the covariance and the correlation matrix of the random

variables X1, X2, ..., Xn, respectively. Recall from (7.8) and (7.10) that £x and
Qx are symmetric matrices.

(i) Let v = (v:)i=1.:n € R™ be an arbitrary column vector of size n. From (7.25), we
find that ‘
UtEx’U = var <Z 1)1X1> > 0, (729)
i=1 _

since the variance of any random variable is nonnegative. Thus, v'Exv > 0 for any
v € R™, and we conclude that Yx is a symmetric positive semidefinite matrix; cf.
Definition 5.7.

(i) Recall from (7.17) that

Ox = (Dox) 'Ex(Doy )}, (7.30)

where (Dyy )" = diag (%) .
Let v € R™ and let o
w = (Dox)"1 V. (7.31)
Then,
N 4 —
w' = v (Dox) ™) = 0" (Doy) ™", (7.32)

since (Dsy) " is a diagonal matrix and therefore symmetric, i.e., ((Dox)_l)t =
(Dox) ™" k
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From (7.29-7.32), we find that
o (Dose) ™ Sx(Dor)

= w'Sxw
> 0, YweR"

1
v Qx’U

il

Thus, v*§2xv > 0 for all v € R™, and we conclude that Qx is a symmetric positive
semidefinite matrix; cf. Definition 5.7. a

Lemma 7.5. Let X1, X2, ..., X» be n random variacbles on the same probability
space. The covariance matriz Tx of X1, Xa, ..., Xn is nonsingular if and only if
there is no linear combination of the random variables X1, X2, ..., Xu that would
be constant, i.e., a constant random variable.

Proof. In order to prove Lemma 7.5, it is enough to show that the matrix ¥x is

singular if and only if there exist constants ¢1, ¢, ..., ca, and co, not all equal to 0,

such that . '
Z ¢Xi + co =0,
i=1

which is equivalent to

var <ZciXi> = 0, (7.33)
i=1

since ¢o is a constant.
Let C = (¢i)i=1:n. From (7.25) and (7.33), we obtain that
C'oxC = 0. (7.34)

Note that, since the constants c1, ¢z, . . ., cn, and co were assumed to not be all equal
to 0, it follows that the n x 1 vector C' is not equal to 0.

In other words, we need to show that
Yx singular <= there exists C' # 0 such that C*SxC = 0. (7.35)

To prove (7.35), it is important to recall from Lemma 7.4 that Yx is a symmetric
positive semidefinite matrix.!

If ©x is a singular matrix, it follows from Theorem 4.3 that 0 is an eigenvalue of
Tx. Let C' # 0 be an eigenvector of £x corresponding to the eigenvalue 0. Then,
YxC = 0 and therefore C*LxC = 0.

If there exists a vector C' # 0 such that C'ExC = 0, we obtain from Definition 5.6
that Sx is not symmetric positive definite. Then, from Theorem 5.6, it follows that
0 is an eigenvalue of ¥x, and we conclude from Theorem 4.3 that the matrix Xix is
singular.

Thus, the equivalence (7.35) is established. O

1The equivalence (7.35) does not hold for a matrix which is not symmetric positive semidef-
inite matrix. For example, if A = ( é _01 ) and C = ( i ), then C*AC = 0 and A is a

nonsingular matrix.
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7.2 Covariance and correlation matrix estimation from
time series data

Let X1, X2, ..., Xn be random variables given by time series data at N data points
ti; 1 =1: N, with N > n. Denote by Tx, the column vector of the time series data
for the random variable X, for k= 1:n, i.e.,

Tx, = (Xk(t))e=1:n, YE=1:n, (7.36)
and denote by .
Tx = COl (Txk )k:l:n (737)

the N x n matrix of time series data for the n random variables.

The sample mean fix, of Xk, the unbiased sample variance &2 of Xi, and the
unbiased sample covariance cov(X;, Xx) and sample correlation &orr(X;, Xi) of X;
and Xy are given, respectively, by

N
~ 1
Bxe = ZXk(ti), Vik=1:n (7.38)
" N
G = N-—1 ;(Xk(t7) - ﬁxk)z, Vk= _1 DT (7.39)

N
G, Xe) = g DKt — B, ) (Xa(t) — fix,), V1 < .k < 17.40)
i=1

TN, Xe) = @Y.(E:’%f_’“) V1<jk<n. (7.41)
7

The sample covariance matrix $ix and the sample correlation matrix Qx of the

random variables X1, X2, ..., X, are the n X n matrices given by
Sx(j,k) = ov(X;,Xk), Y1<4,k<mn (7.42)
Ox(G, k) = &or(X;,Xs), V1< k<n. (7.43)

"The following connections between the sample covariance matrix f)x and the sam-
ple correlation matrix 2x can be established as in Lemma 7.1:

o~ o~

Six = DoxCxDoy; (7.44)
Ox = (Do) "Sx(Doy) ™", (7.45)

where Doy = diag(G%)s=1:n and (Do, )~! = diag (51;)&_1. . Note that (7.44) and

(7.45) can also be written as follows:

o~

YXx = diag(ak)kzlzn ﬁx diag(ak)k=1:n; (746)

Ox = diag (;—k> Sx diag (—;};) . (7.47)
k=l:n k=lin

Let T'x, be the column vector of the time series data for the random variable Xy
normalized to mean equal to 0, i.e.,

Tx, = (Xu(t) = Bxp)smpy » (7.48)
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and let _

Tx = col (Tx,),_ym (7.49)
be the mean—normalized N X n matrix of time series data for the n random variables.
Lemma 7.6. Let X1, Xa, ..., X» be n random variables given by the N X n time
series data matriz Tx. The sample covariance tov(X;, Xx) and the sample correlation
corr(X;,Xw) of X; and Xk, and the sample variance 5% of X, are given by:

— 1 =t = 1 = = .
cou(X;, Xx) = N1 Tx,Tx; = N1 Tx;Tx,, ¥ 1<j,k<n(7.50)
~ 1 = 1 =t =
6t = ITx P’ = 5= T%.Tx,, Vk=1:n; (7.51)
T Tx,
’ T, || 1T 11
where ij and Tx, are given by (7.48).
Proof. From (7.48), we find that
Tx,(8) = Xi(t:) —fix,, Vi=1:N; (7.53)
TX7(’L) = Xj(ti)—ﬁxj, Yi=1:N. (7.54)
Then, from (7.40), (7.53), and (7.54), it follows that
N
. 1 o oam :
V(X Xe) = 7 ;ij (i)Tx, (1), V1<35,k<n (7.55)
Note that
N = P — =t o= :
S Tx;()Tx, () = Tx,Tx, = Tx,Txy3 (7.56)
i=1

see, e.g., the row vector—column vector multiplication formula (1.5).
Then, from (7.55) and (7.56), we conclude that

1

. =t o= 1 = = .

COV(Xj,Xk;) == ]—V——-:—]_— TXijk = —N—“_—" TXkTXja V1 < j,k < n. (757)
Moreover, from (7.39) and (7.57), it follows that
~ P 1 —t = 1 =
67 = ov(Xk, Xi) = 1 TaTx = y—1 Tx.|?, Yk=1:n, (7.58)

where the last equality comes from the fact that v'v = ||v||?; see (5.8).
From (7.58), we obtain that

A 1 =
ok = NI | Tx,|l, Vk=1:n, (7.59)
and, from (7.41), (7.57), and (7.59), we conclude that
e O 7 I
X, Xy) = cov(j(]A,Xk) _ ! N1 xk1 X
Ok0j TN=1 HTXjH NI 17,1

L,
T Ty,
= XN yi<ik<n
T, 1} 1T
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Theorem 7.1. Consider n random variables X1, Xa, ..., Xn given by the N x n
time sertes data matric Tx.

(i) The sample covariance matriz 5 of the n random variables can be obtained from
the mean-normalized matriz of time series data Tx as follows:

~ 1 .
Sx = o T Tx. (7.60)

(i) The sample correlation matriz Ox of the n random variables can be obtamed from
Tx as follows:

_ 1 I 1
* Tl e N\l (r6)

Proof. (i) From (7.57), we find that

Sx(i, k) = GV(X;, X) = Nl__l T, Txy, Y1<4k<n, (7.62)

and, from (1.13), we obtain that the entry (4, k) of the matrix T;Tx is
TxTx)(G. k) = Tx,Tx,, V1<jk<n, (7.63)
since Tx = col (Txk)kzlm, see (7.49), and T; = row (T;j)

Then, from (7.62) and (7.63), we conclude that

o 1 P . .
Sx(,k) = 51 @xTx)0.k), ¥1<jk<n,

j=lin

and therefore that L

ix = N — 1 T_;(Tx
(ii) Recall from (7.47) that
Ox = diag (;) Six diag (;) ) (7.64)
Ok k=1:n Tk k=ln
where G, is the unbiased sample variance of Xy given by (7.59), i.e.,
~ 1 -
Ok = \/N_—l—”TXk”' Vk=1:n.
Note that ) )
diag (,\—) VN —1 diag ( ) . (7.65)
Tk k=1 ”TXkH k=1:n

From (7.64), and using (7.60) and (7.65), we find that

Ox

VN —1 diag ( ) ( T Tx> v N —1 diag (
”Txk“ k=1:n N-1"7%

1 =t = 1
1T, 1] k=ln 1T, ] k=1lin

)
1T/ hmtin
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Ezample:® The file data-DJ80-july2011-june2013.zlsz from fepress.org/nla-primer
contains the end of week and end of month adjusted closing prices for eight financial
and technology Dow Jones components (AXP; BAC; JPM; CSCO; HPQ; IBM; INTC;
MSFT) between July 1, 2011 and June 30, 2013. We compute the sample covariance
and sample correlation matrix of the returns of the eight stocks using this data.

The weekly (percentage) returns are computed using the end of week closing prices
for the eight stocks, which, using the notation from section 7.2, give the entries of the
matrix Tx. After computing the mean normalized time series matrix Tx of the stock
returns, the sample covariance matrix Xx weer and the sample correlation matrix

Qx week are computed from the formulas (7.60) and (7.61), respectively.

0.0010 0.0013 0:0010 0.0005 0.0007 0.0005 0.0006 0.0005

0.0013 0.0036 0.0021 0.0010 0.0011 0.0009 0.0009 0.0009

0.0010 0.0021 0.0019 0.0009 0.0011 .0.0007 0.0007 0.0007

$ | 0.0005 0.0010 0.0009 0.0015 0.0009 0.0006 0.0005 0.0005
Xweek = | 0,0007 0.0011 0.0011 0.0009 0.0034 0.0008 0.0010 0.0006
0.0005 0.0009 0.0007 0.0006 0.0008 0.0009 0.0005 0.0004

0.0006 0.0009 0.0007 0.0005 0.0010 0.0005 0.0011 0.0005

0.0005 0.0009 0.0007 0.0005 0.0006 0.0004 0.0005 0.0009

1 0.6875 0.6995 0.3727 0.3607 0.4847 0.5286 0.5497
0.6875 1 0.8068 0.4165 0.3253 0.4876 0.4517 0.4771
0.6995 0.8068 1 0.5411 0.4300 0.5338 0.4848 0.5088
0 _ | 0.3727 0.4165 0.5411 1 0.4002 0.5183 0.4222 0.4569
Xoweek = | 0.3607 0.3253 0.4300 0.4002 1 0.4937 0.5135 0.3233
0.4847 0.4876 0.5338 0.5183 0.4937 1 0.5482 0.4872
0.5286 0.4517 0.4848 0.4222 0.5135 0.5482 1 0.5137
0.5497 0.4771 0.5088 0.4569 0.3233 0.4872 0.5137 1

Note that the rows and columns in the correlation and covariance matrices herein
correspond to the companies in the following order: AXP; BAC; JPM; CSCO; HPQ;
IBM; INTC; MSFT.

Similarly, the monthly returns are computed using the end of monthly closing
prices for the eight stocks. This gives the entries of the matrix Tx, which can be
used to compute the mean normalized time series matrix Tx of the stock returns. The
following sample covariance matrix and sample correlation matrix are then computed
by using formulas (7.60) and (7.61), respectlvely:

0.0030 0.0053 0.0047 0.0029 0.0039 0.0012 0.0017 0.0022

0.0053 0.0201 0.0125 0.0058 0.0061 0.0022 0.0020 0.0047

0.0047 0.0125 0.0124 0.0061 0.0049 0.0022 0.0023 0.0042

S _ | 0.0029 0.0058 0.0061 0.0076 0.0048 0.0020 0.0025 0.0028
Xomenth = 10,0039 0.0061 0.0049 0.0048 0.0193 0.0035 0.0039 0.0022
0.0012 0.0022 0.0022 0.0020 0.0035 0.0020 0.0012 0.0008

0.0017 0.0020 0.0023 0.0025 0.0039 0.0012 0.0039 0.0024

0.0022 0.0047 0.0042 0.0028 0.0022 0.0008 0.0024 0.0034

2 A similar example for computing sample covariance and correlation matrices for daily re-
turns of Apple, Facebook, Google, Microsoft, and Yahoo was included in Chapter 1. Details on
computing percentage returns can also be found there.
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1 .0.6843  0.7659 0.5991 0.5098 0.4781 0.5116 0.6890
0.6843 1 0.7923 0.4652 0.3100 0.3482 0.2269 0.5745
0.7659 0.7923 1 0.6304 0.3188 0.4438 0.3388 0.6493
O _ | 0.5991 0.4652 0.6304 1 0.3947 0.5165 0.4610 0.5610
Xomonth =1 0.5098 0.3100 0.3188 0.3947 1 0.5544 0.4464 0.2697
0.4781 0.3482 0.4438 0.5165 0.5544 1 0.4360 0.3009
0.5116 0.2269 0.3388 0.4610 0.4464 0.4360 1 0.6733
0.6890 0.5745 0.6493 0.5610 0.2697 0.3009 0.6733 1

As expected, the correlations between the returns of the financial companies,
and the correlations between the returns of the technology companies are generally
stronger than the correlations of the returns of a financial company and a technology
company. Also, all the returns, both weekly and monthly, are positively correlated
with each other. [0

An important issue in practice is that the sample covariance matrix of time series
data may be very close to singular, which affects the performance of many algorithms,
e.g., the Cholesky decomposition and linear solvers. The result of Theorem 7.2 gives
necessary and sufficient conditions for the sample covariance matrix to be nonsingu-
lar, and will be used subsequently for the linear regression of time series data; see
section 8.2. This result is the time series version of Lemma 7.5 for random variables.

Theorem 7.2. Let Xy, Xo, ..., X, ben random variables giwen by the N x n time
series data matriz Tx = col(Txy )y, @t N data points, with N > n. The sample

covariance matriz Yx is nonsingular if and only if the vectors Tx,, Tx,, ..., Tx,,
1 are linearly independent, i.e.,

Sx nonsingular <= Tx;,Tx,,... yI'x,,, 1 linearly independent, (7.66)
where 1 denotes the N x 1 column vector with all entries equal to 1.

Proof. Recall from (7.60) that $ix = gLy Ty Tx, where Tx = col (T'x,),_, . is the
mean-normalized N x n matrix of time series data for the n random variables; see
(7.48) and (7.49).

Also, recall from Lemma 5.2 that a matrix of the form M*M is symmetric positive
definite if and only if the columns of M are linearly independent.

Then, we conclude that

Sx nonsingular <= Txl,sz,--.,Txn linearly independent. (7.67)

From (7.67), it follows that, in order to prove (7.66), it is enough to show that

Tx,,Txy,...,Tx,,1 linearly independent (7.68)

<= Tx.,Tx,,--.,Tx, linearly independent. (7.69)

o Assume that Tx;y Txy, -, Tx,, 1 are linearly independent. We will show that
Tx,, Txy,y ..., Tx, are linearly independent, which is equivalent to showing that, if

¢k, k =1:n, are constants such that

> aTx, = 0, (7.70)
k=1

thency, =0forallk=1:n.
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Since Txk = (Xk(tq,) — ﬁxk)iZI:N and Tx, = (Xk(ti))izl:z\l, see (7.48) and (7.36),
we obtain that

Tx, = Tx, — fix, 1. (7.71)
Then, from (7.70) and (7.71), we find that
0 = chTxk = ch (Txk — ﬁxkl) = zckak — chﬁxkl
fo=1 k=1 k=1 k=1
= chTX’C - <Z Ckﬁxk> 1,

k=1 k=1
and, since Tx,, Tx,, ---, Ix,, 1 are linearly independent, we conclude that ¢, =0
for all k = 1 : n, which is what we wanted to show.
o Assume that Tx,, Tx,, .- -, L x, are linearly independent. We will show that Tx, ,.
Txy, - Tx,, 1 are linearly independent, which is equivalent to showing that, if ds,

k = 0 : n, are constants such that

dol + > diTx, = 0, (7.72)
k=1

then dy =0orallk =0:n.
From the definition (7.38) of ix,, it follows that

N
1'Tx, = Y Xi(t:) = Niix,, Vk=1:n. (7.73)
=1
Also, note that
N
11 = > 1 =N C(1.74)

By multiplying (7.72) by 1* and using (7.73) and (7.74), we find that

Ndo + N difix, = 0,

k=1
and therefore "
do = — Y. difix;. (7.75)
k=1
By substituting formula (7.75) for do into (7.72) and using (7.71), we obtain that
0 = dol + idkak
k=1

- <zdkﬁxk> 1+ deTxk
k=1 k=1

= deTxk - deﬁxkl
k=1 k=1
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de(Tx, — [ix, 1)

(1
hE

k=1~
= Y dTx,.
k=1
Since we assumed that Tx,, Tx,, ..., Tx, are linearly independent, we conclude
that dr = 0 for all kK = 0 : n, which is what we wanted to show. a

Note that the linear independence of the time series data vectors Tx,, T, ..

Tx,, is not sufficient, for the sample covariance matrix Yx to be nonsingular; a coun-
terexample can be found in an exercise at the end of this chapter.

")

7.3 The Linear Transformation Property

Theorem 7.3. (Linear Transformation Property.) Let X1, Xz, ..., Xn ben
random variables on the same probability space, and let Yi, Ya, ..., Yo be random
variables given by '

Y = MX,

where M is an m X n matriz, and Y = (Yi)iz1im ond X = (Xy)i=1.n denote the
column vectors of the random variables Y, i = 1:m, and X;, i = 1 : n, respectively.
Let Zx and Xy be the covariance matrices of X and Y, respectively. Then,

Sy = MIyM". (7.76)
Note that (7.76) can also be written as
Sux = MIxM". (7.77)

Proof. To prove (7.76), recall from (1.14) that, if A, B, C are matrices of sizes m X n,
n x n, and n X m, respectively, with A = row (r;),_,.,,, and C = col (¢x);_.,n, then
ABC' is an m x m matrix with®

(ABC)(,k) = rjBex, Yi=1:m, k=1:m. (7.78)

be the row form of M. Then, M? is an n x m matrix with
; see (1.18). From (7.78), it follows that

Let M = row (Tj )j:l:m
column form M* = col (ry), _,.-

(MExMY)(5,k) = riSxrt, Vi=1:m, k=1:m. (7.79)

Note that, if M = row(r;),_;,,, then MX = (r;X)
Y=MXand Y = (¥i)i=1.m, we find that

see (1.12). Since

i=1:m)?

Y; = rX, Vi=1:m. (7.80)

3Note that r; is a row vector, and therefore the row vector—matrix—column vector multiplica-
tion from (7.78) is well defined. .
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If X = (Xi)i=1:n denotes the column vector of the random variables X;, ¢ =1:n,
then formula (7.24) from Lemma 7.3 can be written as follows:

cov ((c“))tx, (c@))tx) — (CWYEx0® = (C@)imec®. (7.81)
Then, from (7.80) and using (7.81) it follows that
Tv(j, k) = cov(Ys,Ye) = cov(r; X,ruX)
= 7%xrh, V1<5,k<m. (7.82)
From (7.79) and (7.82), we conclude that Ly = MZxM". O

Ezample: As a simple application of the Linear Transformation Property, let Xi,
Xa, ..., Xn be nonconstant random variables, and let Y1, ¥2, ..., ¥, be the random
variables given by Y; = d;X;, where d; # 0, are constants, for i = 1:n. Let Y =
(Vi)iztin and X = (X;)i=1:n. Then, Y = DX, and, from the Linear Transformation
Property (7.76), it follows that Sy = DEx D*. Since D is a diagonal matrix, D! =D,
we conclude that

¥y = D¥xD. O (7.83)

Theorem 7.4. Let X1, Xz, ..., Xa be n random variables, and let X = (Xi)i=1:n.
Denote by pux the mean vector of X and by Lx the covariance matriz of X. Let Y1,
Y2, ..., Yo be random variables given by

Y = b+ MX,

where Y = (Yi)im1:m, M is an m X n matriz, and b is an m x 1 column vector.
Denote by py the mean vector of Y and by Xy the covariance matriz of Y.
Then,

by = b+Muy and Sy = MU M' (7.84)
Proof. From the linearity of expectation, it follows that
EMX] = ME[X] = Mpx; (7.85)
see (7.128). Then, from (7.85), we find that
wy = E[Y] = Ejb+ MX] = b+ FE[MX] = b+ Mpx.

Moreover, since b is a constant vector, the covariance matrix of Y = b+ MX is
the same as the covariance matrix of MX, and therefore ¥+ = Zyx. Note that
Sux = MExM?; see (7.77). Thus, we conclude that

Yv = Smx = MExM".
0

The Linear Transformation Property can be used for generating normal random
variables with a given correlation matrix, which can be subsequently used for Monte
Carlo simulations, see section 7.5, and for establishing that any symmetric positive
semidefinite matrix is the covariance matrix (or the correlation matrix, if the main
diagonal entries are equal to 1) of some random variables; see section 7.4.
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7.4 Necessary and sufficient conditions for covariance
and correlation matrices

In Lemma 7.4, we proved that any covariance matrix is symmetric positive semidefi-
nite. We now show, using the Linear Transformation Property, that this is a necessary
and sufficient condition by finding normal random variables with covariance matrix
equal to any given symmetric positive semidefinite matrix, and establish a similar
result for correlation matrices.

Theorem 7.5. (i) An n X n square matriz is the covariance matriz of . random
variables if and only if the matriz is symmetric positive semidefinite.

(it) An n X n square matriz is the correlation matriz of n random variables if and
only if the malriz is symmetric positive semidefinite and has all the entries on the
main diagonal equal to 1.

Proof. (i) Recall from Lemma 7.4 that any covariance matrix is symmetrlc positive
semidefinite.

To prove that any symmetric positive semidefinite matrix is a covariance matrix,
let A be an n X n symmetric positive semidefinite matrix. We will find random
variables X1, X, ..., X, with covariance matrix Tx = A.

Since the matrix A is symmetric, it follows from Theorem 5.4 that there exists an
orthogonal matrix Q and a diagonal matrix A such that

= QAQ". ' (7.86)

Recall that A = diag():)i=1:n, where X;, i = 1 : n, are the eigenvalues of A. Note
that A; > 0, for all < = 1 : n, since the eigenvalues of a symmetric positive semidefinite
matrix are nonnegative; see Theorem 5.6. Let A2 be the diagonal matrix given by

AY? = diag (\/AT) . (7.87)
Using (1.93), we find that
AP AV = diag(N),y, = A (7.88)
Let
M = QAY? (7.89)
Then,
Mt — (A1/2)yt Qt — A1/2 Qt, (790)

since AY/? is a diagonal matrix and therefore symmetric, i.e., (AY2) = AY2, Then,
from (7.89), (7.90), (7.88), and (7.86), we obtain that

MM' = QAY?AY?Q = QAQP = A. (7.91)

Let Z1, Z2, ..., Zn be independent standard normal variables, and let X1, X,
..+, X» be random variables given by X = MZ, where M is the matrix given by
(7.89), X = (Xi)i=1m and Z = (Z;)i=1.n. Let ¥x be the covariance matrix of Xi,

“Note that X1, X2, ..., Xn are, in fact, normal random variables, since they are linear
combinations of independent normal variables.
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X2, ..., Xn. Note that the covariance matrix £z of Z1, Zs, ..., Z, is the identity
matrix, i.e., Bz = I. Then, from the Linear Transformation Property (Theorem 7.3)
and using (7.91), we find that

Yy = MIM' = MM' = A.

In other words, we found random variables X1, X2, ..., X, with covariance matrix
equal to the matrix A. We conclude that any symmetric positive semidefinite matrix
is a covariance matrix.

(i1) Recall from Lemma 7.4 that any correlation matrix is symmetric positive semidef-
inite with main diagonal entries equal to 1; see (7.11).

To prove that any symmetric positive semidefinite matrix with main diagonal
entries equal to 1 is a correlation matrix, let A be an n X n symmetric positive
semidefinite with A(4,7) = 1 for all i =1 : n. We will find random variables X1, X,
..., Xn with correlation matrix Qx = A. :

We showed above that there exist random variables X1, X, ..., X, with covari-
ance matrix Xx = A. Since A(4,4) = 1 for all i = 1: n, it follows that £x(¢,4) =1
for all i = 1 : n, and, from Lemma 7.2, we conclude that Qx = Xx = A, which is
what we wanted to show. O

The method for finding normal random variables with a given covariance ma-
trix described above requires finding the eigenvalues of the given symmetric positive
semidefinite matrix. Note that this method is not used in practice if the given matrix
is symmetric positive definite, in which case the Cholesky decomposition of the given
covariance matrix is used; see section 7.5 for details.

Ezample: The 3 x 3 matrix

1 a b
A= a 1 ¢ (7.92)
b ¢ 1
is a correlation matrix if and only if
~1<abe<1l and det(A) =1+ 2abc—a®—b°—c*>0. (7.93)

Solution: Since all the main diagonal entries of A are equal to 1, it follows from
Theorem 7.5 that the matrix A is a correlation matrix if and only if it is symmetric
positive semidefinite, which, according to (5.64) is equivalent to

~1<a,b,c<1 and det(A)=1+42abc—a®’—b"—c*>0. O (7.94)

Exzample: Find all the values of p such that the matrix
1 08 03
Q = 08 1 p
03 »p 1

is a correlation matrix.
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‘ Solution: From (7.93), it follows that the matrix 2 is a correlation matrix if and only »
if —1<p<1and ‘

det(§2) = 1+2-(0.8)-(0.3) p—p* — (0.8)> — (0.3)* > d,

which is equivalent to
p°—0.48p—0.27 < 0. (7.95)

Thus p must be between the roots —0.332364 and 0.812364 of the quadratic equation

p® — 0.48p — 0.27 = 0 corresponding to (7.95), which is equivalent to —0.332364 <

p < 0.812364; note that the condition —1 < p < 1 is satisfied for all such values of p.
We conclude that the matrix Q is a correlation matrix if and only if

~0.332364 < p < 0.812364. 0O

Erample: Show that it is not possible to.find three random variables on the same
probability space with correlations 0.75, 0.75, and —0.75. In other words, show that
it is not possible to find random variables X1, X2, X3 such that

corr(X1, X2) = 0.75; corr(X1, X3) = 0.75; corr(Xa, X3) = —0.75. (7.96)

Solution: We give a proof by contradiction. Assume that random variables X1, Xo,
X3 with correlations given by (7.96) exist. Then, the correlation matrix of X3, Xo,
X3 is
1 0.75 0.75
Yx = 0.75 1 -0.75 |,
-0.75 -0.75 1

which is the same as the matrix from (7.92) with ¢ = 0.75, b = 0.75, and ¢ = —0.75.
However, the condition (7.93) for the matrix Xx to be a correlation matrix is not
satisfied since, for a = 0.75, b = 0.75, and ¢ = —0.75, we obtain that

1+ 2abc —a® — b? — ¢

]

1+ 2(0.75)(0.75)(—0.75)

- (0.75)* - (0.75) — (—0.75)?
1-0.84375 — 1.6875 = —1.53125
< 0.

1l

We conclude that random Vauables X1, X2, X3 with correlations given by (7.96)
do not exist.

7.5 Finding normal variables with a given covariance or
correlation matrix

Finding normal random variables with a given correlation matrix is often needed in
practice, e.g., for Monte Carlo simulations; see section 7.5.1. A way to do so based
on the Cholesky decomposition and the Linear Transformation Property is presented
below.
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Theorem 7.6. (i) Let A be a symmetric positive definite matriz, and let U be the

Cholesky factor of A. Let Z1, Zo, ..., Zn be independent standard normal variables,
and let X1, X2, ..., Xn be random variables given by

X = U'Z, (7.97)
where X = (Xi)i=1n and Z = (Zs)i=1:n. Then, X1, Xa, ..., Xn are normal random

variables with covariance matriz Tx equal to the given matriz A, t.e.,
Yx = A (7.98)
(ii) If A is a symmetric positive definite matriz with main diagonal entries equal to

1, then the correlation matriz (x of the random variables X1, X2, ..., X, given by
(7.97) is equal to A, i.e.,

Proof. Since X = (Xi)i=1:n = U'Z, it follows that

Xi = Y U'(4,k)Ze.
k=1

Thus, X; is a linear combination of the independent standard normal variables Z1,
Za, ..., Zn, and therefore X; is a normal random variable, for all i =1:n.

If U the Cholesky factor of A, then U'U = A. From the Linear Transformation
Property (Theorem 7.3), we find that

Y = U'SU = U'U = A;

here, we use the fact that Xz = I, since Z1, Z2, ..., Zn are independent standard
normal variables.

(i) If the main diagonal entries of the matrix A are equal to 1, it follows from (7.98)

that all the entries on the main diagonal of the covariance matrix Yx are equal to '

1. From Lemma 7.2, we obtain that Qx = Zx, and, from (7.98), we conclude that
Qx = Tx = A. O

Ezample: Given Z: and Z3 independent standard normal variables, find two normal
random variables X; and X with variance 1 and correlation p, where —-1<p<l.

Solution: Recall from (6.42) that the Cholesky factor of the matrix < z g ) with

. 1 p .
~-1<p<lisU= ( 0 \/1——_p§ ) Then, it follows from Theorem 7.6 that two

normal random variables X1 and Xa given by

(8) - w(2) = () ) (%)

VA
( pZ1+ /1 —p?2Z2 > (7.100)
have correlation matrix

- (1
a- (11,

i

Qx = A (7.99)
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.We conclude that the normal random variables X; and X3 have variance 1 and
correlation p. _
Also, note from (7.100) that X; and X3 can be written as

X1 = Z1; (7101)
Xo = pZi+1—p2Z,. 0O (7.102)

7.5.1 Monte Carlo simulation for basket options pricing
The payoff at maturity T of a basket option on two assets is
max(S1(T) + 52(T) — K,0),

where S1(T") and S2(T) are the prices of the two assets at time T
Assume that the assets have lognormal distributions with risk neutral drift r,
volatilities o1 and o2, continuous dividends ¢; and g2, and with correlation p. Then,

2
Si(T) = S1(0) exp ((r —q - %1) T + alﬁ)ﬁ) ; (7.103)
S(T) = S2(0) éXp ((r —q— %%) T+ azﬁxz> , (7.104)

where X1 and X5 are normal random variables with variance 1 and correlation p.
The value of the basket option can be found using Monte Carlo simulations by
finding sample values of S1(7T) and S2(7") from samples of the standard normal
variable which can be generated, e.g., by using the Box—Muller method.
Note that, if Z1 and Z3 denote two independent standard normal variables, then

X1 = Zl; (7105)
Xo = le +4/1 - p2Z2. (7106)

are normal random variables with variance 1 and correlation p; see (7.101-7.102).
From (7.103-7.106), we obtain that

2
Si(T) = 51(0) exp <<r —q— %) T + alﬁzl) : (7.107)

2
So(T) = S2(0) exp ((T —q2 0—22) T +ooVT (pZ1 ++1- p2Z2)>7.108)
Thus, given 21, 22, ..., zan independent samples of the standard normal variable,

we can obtain N samples of S1(T) and S2(7') as follows:

2
S1(0) exp <<’I“ - g1 — %) T + 01ﬁ22j+1> H
2\ .
S2(0) exp ((7“ g2 — %) T + 0oVT (Pzzj+1 ++1- P2z2'1+2)> ;

for all = 0: (N — 1), which can be used to compute the following N sample values
for the basket option:

S1,;(T)

S2,5(T)

V; = e T max(S1;(T) + Ss,;(T) — K,0).
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The average sample value
~ 1 &
VIN) = >V
j=1

has O (—\/11_—\7> convergence to the value of the basket option; see, e.g., Glasserman [17].

7.6 Multivariate normal random variables

We begin this section with a brief review of one dimensional normal random variables.
The standard normal variable Z is the random variable with probability density
function ’

oy
(]

z

flx) = —=e7'7, (7.109)

and has mean 0 and variance 1, i.e., E[Z] = 0 and var(Z) = 1.

The random variable X is a normal variable if it is of the form X = y+0Z, where
Z is a standard normal variable and u and o are real constants. Note that X has
mean p and variance o2, i.e., E[X] = p and var(X) = o2, and is often denoted by
X ~ N(p,0%). If ¢ # 0, the probability density function of X is given by

1 (z —w)?
— — 7.11
@) = s e (-, (7110)
where exp(t) is a notation for et.
Z1
Definition 7.3. The random variable Z = is a multivariate standard
Zn,
normal variable if it has a probability density function® f : R™ — R given by
flx) = 1 exp ~lzn:x2 (7.111)
(271_)«"//2 2 o 7 b .

where € = (T1,Z2,...,%n).

The mean of Z is pz = 0, where 0 denotes the column vector of size n with all
entries equal to 0, and the covariance matrix of Z is the identity matrix, i.e., 3z = I.
Equivalently, the random variable Z = (Z;);—1.» is multivariate standard normal if
and only if its components Z1, Za, ..., Z, are independent standard normal variables,
since, from (7.111), we find that the probability density function of the multivariate

5Recall that f: R™ — R is the probability density function of a multivariate random variable
X = (X;)i=1:n if and only if, for any a; € R, i =1:n,

) a1 fag an
P(Xi<a1,X2<a2,..,Xn < ap) = / / / f(s1,82, .+, 8n) dsn ... dsadsy.
—0 —_—00 —_e0
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standard normal variable can be written as a product of functions of the underlying
variables z;, 1 <17 < n:

1 5 '
16 = (g o a‘éwz) e oo (-2)

=1

X1
Definition 7.4. The random variable X = is a multivariate normal ran-

Xn
dom variable if and only if there exists an n X 1 vector b and an n x n matriz A such
that :
X = b+ AZ, (7.112)

where Z = (Z;)i=1:n 18 a multivariate standard normal variable.
Denote by px and ¥x the mean vector and the covariance matrix of the multi-

variate normal variable X = b+ AZ. From (7.84) and since pz = 0 and £z = I, it
follows that

ux = b+ AE[Z] = b
Tx = ANzA' = AAL
A multivariate normal random variable X with mean px and covariance matrix
Yx is denoted by X ~ N(ux,Yx). For example, Z ~ N(0,I).

Note that a multivariate normal variable X can be written in the form (7.112) in
infinitely many different ways. However, if

X = b1+ A1Zy = by + AxZo,

then b1 and b must be equal since ux = by = by, and A1 A} = Az A5 since
Yx = A1A} = AsAL. Tt is important to also note that, while both Z; and Zo
are multivariate standard normals, Z; and Z: are different random variables.

Definition 7.5. If the covariance matriz Ly of a multivariate normal variable X is
nonsingular, then X is called a nondegenerate multivariate normal variable.

The probability density function f : R™ — R of a nondegenerate multivariate
normal variable X ~ N(ux,3x) is given by

1 ox <
@m)2 Aot o) T

flz) = —%(m~ux)‘(2x)“l(x—ux)). (7.113)

Lemma 7.7. Let X be a nondegenerate n—-dimensional multivariate normal random
variable with mean vector px and nonsingular covariance matriz Lx. Then,

X = ux+U%Z,

where U is the Cholesky factor of the covariance matriz ©x and Z is a multivariate
standard normal variable.
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Proof. Since X ~ N(ux,¥x), we need to show that
px +U'Z ~ N(ux,Ex), (7.114)

in order to conclude that X = ux + U*Z.

From Definition 7.4, it follows that px + U'Z is a multivariate normal random
variable. Recall from Definition 6.1 that, if U is the Cholesky factor of the symmetric
positive definite matrix Xx, then

Yx = U'U (7.115)
Since pz = 0 and Tz = I, it follows from (7.84) and (7.115) that
Elux +U'Z) = px;
uxiviz = U'Z(UY) = U'U = Sk,

which is what we wanted to show; cf. (7.114). a

Ezample: A two dimensional multivariate normal random variable is called a bivariate
normal random variable. We use formula (7.113) to find the probability density
fanction of a nondegenerate bivariate normal random variable; see (7.118).

Let X = ( §; ) be a nondegenerate bivariate normal variable, where X; and

X are normal random variable with correlation p with p # 1 and p # —1, and with
mean and standard deviation u1, o1, and 2, o2, respectively. Recall from (7.12)
that the covariance matrix of X1 and X is

2
b _ (o) agi1ozp
X 2 .
g102p0 o0

Then,
det(EZx) = oroa(l—p?), (7.116)
see (10.6), and, since p # 1 and p # —1, we find from (10.7) that
_ 1 o3 —010
w1 = 2 1020\
(Ex) 075 (1l — p?) ( ~o102p 0}

. _ 1 — M N .
Let z — pux = ( s — i ) From (10.20), it follows that
(= — px)"(Ex) " @ — px)
o5(z1 — m)* — 20002p(x1 — ) (@2 — p2) + o3 (w2 — p2)*
ofoi(1 - p?)
1 —u1)? T — — — us)?
_ _ (z1 2Ml) _ 2p(&1 — ) (w2 — p2) | (w2 2,“2) . (7.117)
1—p o 0102 25
Using (7.116) and (7.117), we obtain that the probability density function of the
bivariate normal random variable given by (7.113) can be written as follows:

flz1,22) = S — (7.118)

2mo1024/1 — p?

exp < ! ((””1 —u)®  2p(z1 — p)(zw2 — p2) 4 (@2 —2u2)2>)

C2(1—p?) o? 0102 o5
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Lemma 7.8. If every two components of a nondegenerate multivariate normal ran-
dom varigble are uncorrelated, then all the components of the multwamate normal’
random variable are independent.

In other words, if X = (Xi)i=1:n 18 a multivariate normal random variable and
if cou(X;, Xi) = 0 for all1 < j # k < n, then X1, X, ..., Xn are independent
normal random variables.

Proof. Since Ex(Xj, Xx) = cov(X;,Xk) = 0 forall 1 < j # k < n, it follows that

Yx is a diagonal matrix with ¥x(¢,7) = var(X;) = o for all ¢ = 1 : n. Thus,

Six = diag (o7), and $3' = diag ( ) ; see (1.94). From (10.25), we obtain
i=ln

=1:n
that
“ 1
— ux) (S - — 11
(z — px)" (5x) 7' (2 — px) ;af (7.119)
Also, from (10.1), we find that
k(3
det(2x) = []o?. (7.120)

i=1

From (7.113), and using (7.119) and (7.120), it follows that the probability density
function of the nondegenerate multivariate normal variable X is

1 n
@ = A e o <_ ; )
i 1
- = exp( )

=1

=[] fil=s)

=1

o

where

1 (s — pa)®
filzs) = G exp (———2—5?——-—> . (7.121)

Since f(z) can be written as a product of functions of the underlying variables z,
T2, - - ., Tn, we conclude that the random variables X1, Xa, ..., X, are independent.
Also since the function f; given by (7.121) is the p10bab1hty den51ty function of a
normal variable with mean p; and variance o2, see (7.110), it follows that X; is a
normal random variable, i.e., X; ~ N(ui, 02), foralli=1:n. (]

Theorem 7.7. A random variable X = (Xi)izlm s a multivariate normal random
variable if and only if any linear combination of the components X1, Xa, ..., Xn
of X is a normal random variable, i.e., if and only if 3 i, c;:X; is normal for any
GeER,i=1:n.

This result is very important for practical applications, e.g., for modeling portfolio
returns, and can be regarded as an alternative definition for multivariate normal
variables. Its proof is beyond our purpose here and can be found, e.g., in [24].
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Theorem 7.8. Let X ~ N{(ux, YXix) be an n~dimensional multivariate normal random
variable. Let Y be the multivariate random variable given by

Y = b+ MX, (7.122)

where M is an m X n matriz and b is an m X 1 column vector. Then, Y is an m-
dimensional multivariate normal variable with mean b+ Mux and covariance matriz
MZxML s i.e.,

Y ~ N(b+ Mpux, MZxM"). (7.123)

Proof. Recall from (7.84) that if Y = b+ MX, then
py = b+Mpux and Ty = MEIxM'

Thus, in order to establish (7.123), it is enough to show that Y is multivariate
normal. We do so by showing that any linear combination of the components Y1, Ya,
..., Yy, of Y is a normal random variable; see Theorem 7.7. '

Let 7%, ¢;Y; be a linear combination of Y1, Y, ..., Ym, where ¢;, j = 1 :m, are
arbitrary constants. Let C = (¢;);j=1.m be the corresponding m X 1 column vector.
From (1.6), we find that

> gY; = CYY, (7.124)
j=1
and therefore, from (7.122) and (7.124), we obtain that
dogY; = C'Y = C'(b+MX) = C'b+C'MX
j=1
L= ChH(MIO)'X
= ¢+C'X
= T+ aXs, (7.125)
i=1

where €= C?% and C = M'C = ()i=1:n.

Since X is a multivariate normal random variable, any linear combination of X7,
Xs, ..., Xn, is a normal random variable; cf. Theorem 7.7. Thus, from (7.125), it
follows that any linear combination of Y1, Ya, ..., Y, is also a normal random vari-
able, and we conclude, using Theorem 7.7, that Y is a multivariate normal random
variable. . O

Lemma 7.9. Let Z ~ N(0,I) be an n-dimensional multivariate standard normal
variable, and let Q be an nXn orthogonal matriz. Then, QZ is also an n—dimensional
multivariate standard normal variable, i.e., QZ ~ N(0,I).

Proof. Note that, if Z ~ N(0,1), then pz = 0 and Iz = I. From (7.123), it follows
that

QZ ~ N(07 QEZQt) = N(O:QQt) = N(O>I)>
since QQ? = I for any orthogonal matrix Q; cf. (10.14). O
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7.7 Multivariate random variables formulation for
covariance and correlation matrices
The formulas from section 7.1 connecting the covariance and correlation matrix of

random variables, as well as the Linear Transformation Property from section 7.3,
can be established in an elegant way by using multivariate random variables.

Let X1, X3, ..., X, be random variables on the same probability space, and let
X be the n—dimensional multivariate random variable
X1 -
X2
X = . . (7.126)
Xn
The expected value px of X is
E [X 1] \ F231
E [X 2] M2
Ux = E [X] = . = : s

where p; = E[X] for alli=1:n.

Similarly, if X = (Xjk)i1<j<m,1<k<n IS & multivariate random variable taking
values in R™*™, where X are univariate random variables on the same probability
space, for all 1 < j <m, 1 <k < n, then E[X] = (E[X; &) 1<j<m1<k<n

The general result from Lemma 7.10 follows from the linearity of expected values
of random variables and will be used repeatedly:

Lemma 7.10. Let X be an m X n multivariate random variable. Let A and B be
matrices of sizes p X m and n X q, respectively, with constant real entries. Then,

E[AXB] = A E[X] B. (7.127)
The result below is comprised of particular cases of (7.127) which will be used
subsequently.

Lemma 7.11. Let X be an n—dimensional multivariate random variable. Let M be
an m X n matriz with constant entries and let C be an n X 1 column vector with
constant entries. Then,®

EMX] = ME[X]; (7.128)
E[C'X] = C'E[X); (7.129)
E[XC'! = E[X]C. (7.130)
The covariance matrix of the random variables X1, X3, ..., X, can be expressed

compactly using the multivariate random variable X given by (7.126) as follows:

Lemma 7.12. Let Xy be the covariance matriz of the random variables X1, Xz, ...,
Xn. Then,
x = E[(X- E[X]))(X- E[X))"], (7.131)

where X = (X;)i=1:n ts the corresponding multivariate random variable.

®In formula (7.130), XC? is an n X n matrix since X is an n x 1 column vector and C? is an
1 X n row vector; cf. (1.6).
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Proof. Note that X — E[X] is an n. x 1 column vector and (X — E[X])" is an 1 X 1 row
vector. Then, from (1.6), it follows that (X — E[X])(X — E[X])* is the n x n matrix
whose (j,k) entry is (X; — p;)(Xk — ), for all 1 < j, k < n. Thus, the (j, k)-th
entry of the matrix E [(X — E[X])(X — E[X])*] is

E[(X; — p3)(Xi — pr)] = cov(Xj, X&), (7.132)

which is the same as the (7, k)-th entry of the covariance matrix Yx; see Definition 7.1.
We conclude that Sx = E [(X — E[X])(X — E{X})*]. |

The formulas for the variance and the covariance of linear combinations of random
variables from Lemma 7.3 can be proved by using multivariate random variable and
the formula (7.131) for the covariance matrix as seen below:

Lemma 7.13. (Same as Lemma 7.8.) Let X1, Xo, ..., X be random variables on
the same probabilily space. Then,

cov (chnxi,zcgmxi) = (CM)zc® = (cP)isc®,  (7.133)
=1 i=1

where C) = (cﬁ”)i:m and C® = (c§2>)a,;=1:n are two column vectors of size n with
real entries, and Xx is the covariance matriz of the random variables X1, X2, ..
Xn.

2

Proof. Let X = (X;)i=1:n be an n x 1 multivariate random variable. Note that

STeVx = (YK and Y PX = (CP)'X.

4=1 =1

Then, using (7.132), we obtain that

k3 n
cov <Z cz(-l)Xi, Z 622)Xi)
=1 i=1

cov ((c“))tx, (c@))tx)

E [((c“))fx - B[e®yx]) (@)% - B [(c@))tx])t} (7.134)
Using (7.129), we find that
()X — B [(CV)X] = (CW)'X - (CV) BIX] = (C)(X - E[X)); (7.135)
(c®yx-F [(c@))fx])‘ = ((c™)'(x - E[X]))‘ — (X — E[X])'C?. (7.136)
From (7.134-7.136) and using (7.127), we conclude that
cov (i Wx,, zn: c§2>Xi> - E [(c@)t(x ~ BIX))(X — E[X])fc@)]

(€Y E[(X - BIX])(X — E[X])!] ¢®
(C(l))tExC’(Z),
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since Tx = E [(X — B[X])(X — E[X])¥]; see (7.131),
Since (C)!5xC® is a number, it follows that

t
(CDYso® = ((C(l))t2x0(2)> :
see also (7.28). Thus,
(C)ExC® = (D) BL((C)) = (CP)fmxC®,

since Yx is a symmetric matrix and therefore L% = Tx. ]

Theorem 7.9. (Linear Transformation Property; see also Theorem 7.8.) Let
X be an n x 1 multivariate random variable, and let M be an m X n matriz with
constant entries. If Y is the m x 1 multivariate random variable given by

Y = MX, (7.137)

then
Sy = MIM*, : (7.138)

where Tx and Xy are the covariance matrices of X and of Y, respectively.

Proof. From (7.131) and (7.137), it follows that

Sy = E[(Y-E[Y)(Y - E[Y])]
E[(MX ~ E[MX))(MX — E[MX])]. (7.139)

I

From (7.128), we find that
MX - E[MX] = MX — ME[X] = M(X — E[X]), (7.140)
and therefore
(MX — EIMX])! = (M(X — E[X]))! = (X - E[X])'M". (7.141)

From (7.139-7.141), and using (7.127), we obtain that

Ty E[M(X - EX])(X - E[X])*M’]
M E [(X - EX])(X - E[X])'] M*

= MIxM:,

since Tx = F [(X — E[X])(X — E[X])"]; cf. (7.131). m|
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7.8 References

Details on the Linear Transformation Property and its applications to Monte Carlo
methods can be found in Andersen and Piterbarg [3].

An important practical issue is that, for large data sets, the covariance matrix of
time series data may be very close to singular, or some eigenvalues may be very small
and negative; see Lai and Xing [25] for practical ways to overcome this issue.

Three different ways for finding all the values of a parameter p such that-a matrix
is a correlation matrix can be found in Stefanica, Radoi¢i¢, and Wang [39].

For a comprehensive presentation of multivariate normal random variables, see
Jacod and Protter [24].
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Exercises

P

. Let X7 and X3 be random variables with correlation matrix ; 1 ) , where

~1<p<1 Let Y1 = X; and Y> = —X>5. Show that the correlation matrix of

YlandYgis<_1/) —1,0)

. What is the correlation matrix of three random variables whose covariance

1 0.36 —1.44
matrix is 0.36 4 0.80 ?
—1.44 0.80 9

1 06 -03
. Find all the values of p such that the matrix 0.6 1 P is a cor-
' , -03 p 1

relation matrix.

. Let X1, X2, X3 be random variables such that

corr(X1,X3) = 0.3; corr(Xa, X3) = 0.1.

Find upper and lower bounds for p = corr(X1, X2).

. Consider three random variables with pairwise correlation p, i.e., such that the
_ correlation between any two of the random variables is p. What is the smallest

possible value for p?

. Let X1, X2, X3, X4 be random variables such that

corr( X1, X3) = 0.3;  corr(X1, X4) =0.2; corr(Xa, X3) = 0.1;

corr( Xz, X4) = —0.1;  corr(Xs, X4) = —0.2.
Find upper and lower bounds for p = corr(X1, X2).

. Assume that all the entries of an n x n correlation matrix which are not on the

main diagonal are equal to ¢. Find upper and lower bounds on the possible
values of q.

1 0.1 0.2

. Show that the matrix | 0.1 1 —0.3 | is a correlation matrix, and find

02 -03 1
its Cholesky factor.

. Show that it is not possible to find three random variables on the same proba-

bility space with correlations 0.8, 0.7, and —0.5.
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10.

11.

12.
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Consider three random variables given by the following time series data at five
data points:

0.25 —0.50 1.50
1 -1 1.25
-0.50 —-0.25 2
0 0.50 0.75
-1 0.75 1.50
0.25 —0.50 1.50
1 -1 1.25
(i) Show that the time series vectors -0.50 |, —0.25 |, 2 of
0 0.50 0.75
-1 0.75 1.50
the three random variables are linearly independent.
0.25 —0.50 1.50 1
1 -1 1.25 1
(ii) Show that the vectors | —0.50 ],’| —-0.25 |, 2 , | 1 | are
0 0.50 0.75 1
-1 0.75 1.50 1

not linearly independent.

(ili) Compute the sample covariance matrix of the three random variables and
show that it is singular.

Note: This is an example of random variables with linearly independent time se-
ries data whose sample covariance matrix is singular. Recall that the necessary
and sufficient condition for the sample covariance matrix to be nonsingular is
that the time series data column vectors and the column vector with all entries
equal to 1 are linearly independent.

The file data-DJ30-july201 1-june2013.xlsz from fepress.org/nla-primer contains
the end of week and end of month closing prices for eight financial and tech-
nology Dow Jones components (AXP; BAC; JPM; CSCO; HPQ; IBM; INTC;
MSFT) between July 1, 2011, and June 30, 2013.

(i) Compute the weekly and monthly log returns of these eight stocks. Recall

that the log return between ¢ and ¢z of an asset with price S(¢) is In (28?;)

(i) Compute the sample covariance. matrix and the sample correlation ma-
trix of the weekly and monthly log returns of the stocks, and compare them
with the sample covariance and correlation matrices of the weekly and monthly
percentage returns computed in an example in this chapter.

Let X1, X2, ..., X, be nonconstant random variables, and let Y3, Y2, ...,
Y. be the random variables given by YV; = d:X;, ¢ = 1 : n, where d; # 0,
i = 1 : n, are constants. Denote by Yx, Qx and Zv, Qv the covariance and
correlation matrices of X1, X, ..., Xn and of Y1, Ya, ..., Ya, respectively, and
let D = diag(d:)i=1:n.

(i) Show that Yv = DEXxD.
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(it) If d; > 0 for all ¢ = 1: n, show that Qy = Qx.

13. Let
X1 1 1 -1 0
X | ~nN{| =2, -1 3 —2
X3 1 0o -2 3

be a 3—dimensional multivariate normal random variable.

Find the probability that Xy 4+ 2X5 + 2X3 is positive.
M3 1) T=MXx

X1 2 2 0 0.5
X: | ~N -1 ],1 o 1 -025

-2 0.5 —-0.25 1

14. Let

be a 3-dimensional multivariate normal random variable, and let

Yi=Xy Yo=X1+Xo; Ye=X1+Xo+ Xs.

. gl
(i) What are the expected value vector and the covariance matrix of ( Yo |7
Ys
(ii) Find the probability that Y + Y2 + Y3 is negative.
15. Let
X1 1 2 1 0.5
Xo ~ N 0 , 1 3 ~15
X3 -2 0.5 ~1.5 4
be a 3-dimensional multivariate normal random variable.
X1 — Xz
(i) What are the expected value and the covariance matrix of | X2 — X3 |?
X3 — X1
X 1~ X 2
(ii) What is the probability density function of { X2 — X3 |7
Xs— X

16. Let Z., Zz, Z3 be three independent standard normal variables, and let X,
X2, X3 and Y1, Y2, Y3 be normal random variables given by

X1 = Zs; Xo = Z1+22,—-273; Xs = —371+ 22+ Zs;
Y = Z1; Y, = *—-2Z1+\/SZQ; Y; = Z1—71_~5Z2+v9.823.

Show that the covariance matrix of X1, X2, X3 and the covariance matrix of
Y1, Yo, Y3 are equal.
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17.

18.

19.

20.
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Given Z1 and Z» independent standard normal variables, find two normal ran-

dom variables X1 and X2 with covariance matrix ( _41 _91

Given Z; and Z independent standard normal variables, find two normal ran-

dom variables X1 and X. with correlation matrix ( 0125 0'12 5 > .

Given Z1, Zg, 73 independent standard normal variables, find three normal

1 1 05
random variables X1, X2, X3 with covariance matrix 1 4 =2
05 -2 9

Given Z1, Zs, Z3 independent standard normal variables, find three normal

1 03 04
random variables X1, Xo, X3 with correlation matrix 03 1 0.5 ) .
04 05 1



Chapter 8

Ordinary least squares (OLS). Linear
regression.

Ordinary least squares (OLS).

Least squares for implied volatility computation.

Linear regression: ordinary least squares for time series data.
Ordinary least squares for random variables.

The intuition behind ordinary least squares for time series data.

8.1 Ordinary least squares

Let A be an m X n matrix with more rows than columns, i.e., with m > n, and
assume that the column vectors of the matrix A are linearly independent. Let y be
a column vector of size m.

A solution z € R"™ to the linear system Ax = y exists if and only if the vector y is
a linear combination of the column vectors of A, which is rarely the case in practice.

The ordinary least squares method (OLS) provides an alternative to solving Ax =
y exactly, and requires finding a vector £ € R™ with smallest approximation error
y — Az, i.e., such that |Jy — Az]| is minimal, where || - || denotes the Euclidean norm;
see (5.8). This can be stated formally as follows:

Given y € Rm, find =z € R" such that ||y — Az|| is minimal. (8.1)
Note that we will also refer to (8.1) as solving the least squares problem
y ~ Az, (8.2)

Problem (8.1) is equivalent to finding the global minimum point of the function
f:R™ - R given by
f(@) = |ly— Az|®. (8.3)

Recall from (5.8) that ||w||? = (w,w) = w'w for any vector w. Then,

ly—Azl|® = (y—A2)'(y - Az) = (v —2"A")(y — Az)

= yly—ac'Aly —yt Az + 2" A" Ax. (8.4)

227
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Note that
Y Az = z*Aly (8.5)
since (u,v) = (v,u) for any v and v and therefore
y' Az = (Az,y) = (y,4z) = (Ao)'y = z"A"y.
From (8.4) and (8.5), it follows that
lly — Az||* = y'y — 2z Aly + 2 A' Az (8.6)
From (8.3) and (8.6), and since y'y = ||y||?, we conclude that
f(z) = |[yl)® - 22" Aly + 2 A’ A (8.7)

Recall that any minimum point zo of f(z) must be a critical point of f(z), i.e., a
solution to D f(zo) = 0. From (8.7), it follows that the gradient D f(z) of f(z) is

Df(x) = —2D(atAly) + D(z*A' Ax), (8.8)

since ||y||? is not a function of = and therefore D(||y||?) = 0.
Recall from (10.44) and (10.47) the following gradient formulas:

D('Cc) = ¢* (8.9)
D(z'Mz) = 2(Mz)*, (8.10)

for any constant column vector C and for any symmetric matrix M. Since A°A is a
symmetric matrix, see Lemma 5.2, we obtain from (8.9) and (8.10) that

D(z'A'y) = (A'y)Y (8.11)
D(z*A'Az) = 2(A'Az)". (8.12)

From (8.8), (8.11), and (8.12), it follows that

Df(x) = —2(A%)"+2(4%A4x)"
2(A* Az — Aty)t. (8.13)

From (8.13), we find that D f(zo) = 0 if and only if
A'Axzo = A'y. (8.14)

Since the columns of A are linearly independent, it follows from Lemma 5.2 that
the matrix A*A is symmetric positive definite. Then, A*A is a nonsingular matrix,
see Lemma 5.3, and therefore the unique solution of (8.14) is

o = (AA)"'A%y. (8.15)

To classify the critical point zo given by (8.15), we compute the Hessian of f(x).

From (10.46) and (10.48), we obtain that D?(z*A’y) = 0 and D? (z° A’ Az) = 2(A*A).
Then, from (8.7), it follows that D?f(z) = 2(A*A), and therefore

D?f(zo) = 2(AA).
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Since the matrix A*A is symmetric positive definite, we obtain that the Hessian
D? f(x0) is symmetric positive definite, and therefore o is a minimum point for the
function f(x). We conclude that the point zo is a global minimum point for f(x),
since xg is the only critical point of f(z). '

Thus, the solution to the least squares problem (8.1) is given by (8.15), i.e.,

x = (A*A) A%y (8.16)

Note that the numerical value of = from (8.16) is computed by solving the linear
system (A‘A)x = A’y using the Cholesky solver from Table 6.2, since AA is a
symmetric positive definite matrix; see the pseudocode from Table 8.1 for details.

Table 8.1: Least squares implementation

Function Call:
x = least_squares(4,y)

Input:
A =m X n matrix; m >n

y = column vector of size m

Output:
2 = solution to min ||y — Az||

z = linear.solve_cholesky(A* A, A'y);

8.1.1 Least squares for implied volatility computation

Consider a European call or put option' on an underlying asset whose price is as-
sumed to follow a lognormal model. The implied volatility of the option is the unique
value of the volatility parameter o from the lognormal model that makes the Black—
Scholes value of the option equal to the market price of the option.

More precisely, if Cr, and P, are the market prices of a European call option
and of a European put option, respectively, with strike K and maturity T on an
underlying asset with spot price S paying dividends continuously at the rate g, and
assuming that interest rates are constant and equal to 7, the implied volatility oimp
corresponding to the price Ciy, is, by definition, the solution o = gimp to

CBS(S, K7T>U>T7q) = Cmy (817)
the implied volatility ¢imp corresponding to price Py, is the solution o = oimp to
Pps(5,K,T,0,7,q) = Pm. (8.18)

Here, Cps(S, K,T,o,r,q) and Pgs(S, K,T,0,7,q) are the Black-Scholes values of a
call option and of a put option given by (10.93-10.96), i.e.,
Cps(S,K,T,0,r,q) = Se " N(d)— Ke T N(ds); (8.19)
Pps(S,K,T,0,m,q) = Ke ""N(—dz)~— Se " N(—d1), (8.20)

1See Section 10.3 for a brief overview of European options.
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respectively, where N(z) is the cumulative distribution of the standard normal vari-

able, i.e.,
z 22
N(z) = \/%_W / e 7 dz,
and ( 2)
m(Z)+(r—q+%5)7T
dy = a\/T i de = d1—aﬁ. (8.21)

For any plain vanilla European option, the option price Cp or P, the maturity
T, the strike K, and the spot price S of the underlying asset are known. However,
a continuous dividend yield ¢ for the underlying asset is very rarely quoted in the
markets and the interest rate + could be chosen from several different discount curves.
As seen below,? the least squares method and Put-Call parity can be used to overcome
these issues and find the implied volatility using Newton’s method.

As an example of how implied volatilities are computed in practice, consider the
snapshot from Table 8.2 of the mid prices® on March 9, 2012, of the S&P 500 options
(ticker symbol SPX)* maturing on December 22, 2012. These options are FEuropean
options and therefore we can use the Black-Scholes framework. Although not needed
for this method, the corresponding spot price of the index was 1, 370.

Table 8.2: Dec 2012 SPX option prices on 3/9/2012

Call Strike Price || Put Strike Price
C1175 225.40 P1175 46.60
C1200 205.55 P1200 51.55
C1225 186.20 P1225 57.15
C1250 167.50 P1250 63.30
C1275 149.15 P1275 70.15
C1300 131.70 P1300 77.70
C1325 115.25 P1325 86.20
C1350 99.55 P1350 95.30
C1375 84.90 P1375 105.30
C1400 71.10 P1400 116.55
C1425 58.70 P1425 129.00
C1450 47.25 P1450 143.20
C1500 29.25 P1500 173.95

C1550 15.80 P1550 210.80
C1575 11.10 P1575 230.90
C1600 7.90 P1600 252.40

Recall from Section 10.3 that the Put—Call parity states that taking a long posi-
tion in a European call option and a short position in a European put option with
the same strike K and maturity T is equivalent to taking a long position in a for-
ward contract with delivery price K and maturity T, and therefore the following

2This method was implemented in 2010 in Bloomberg terminals, providing a tenfold improve-
ment in the accuracy of implied volatility calculations over the prior method.

3The mid price of an option is the average of the bid price and ask price of the option.

4More information on SPX options can be found on the Chicago Board Options Exchange
(CBOE); see http://www.cboe.com/products/indexopts/spx-spec.aspx
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relationship between the values C' and P of the call and put options must hold for
no-arbitrage: .
C—P = Se™" — ge™ 7. - (8.22)

Let F = Se™ 97T be the forward price of the asset at time 7. Then, Se™ 97 =
Fe~™ and the Put-Call parity (8.22) can be written as

C-P = Fe ™" —~Ke™'7, (8.23)
" Denote the discount factor by )
disc = e 7, (8.24)
and the present value of the forward price by
PVF = Fe T, (8.25)
Then, (8.23) is the same as
C—-P = PVF— K -disc. (8.26)

The data from Table 8.2 provides call and put options values for 16 different
strikes. From (8.26), it follows that the values of PV F and disc can be obtained by

prr ) and with the
following 16 x 2 matrix A and the following 16 x 1 column vector y corresponding to
C — P for each strike:

solving a least squares problem y ~ Az, see (8.2), with z =

1 —1175 178.80
1 —1200 154.00

1 —1225 129.05

1 —1250 104.20

1 —1275 79.00

1 ~1300 54.00

1 —1325 29.05

4 - 1 -1350 | B 4.25
= 1 —1375 |» ¥ = —~20.40
1 —1400 —45.45

1 —1495 —70.30

1 —1450 —95.95

1 —1500 —144.70

1 —1550 —195.00

1 —1575 ~219.80

1 —1600 —244.50

The solution & = (A*A)~" A’y to this least squares problem, see (8.16), is com-
puted as x = least_squares(A,y) by using the routine from Table 8.1. We find that

PVF \ [ 1349.54
( disc ) = ( 0.9964 ) ' (8:27)
In order to use the values PV F = 1349.54 and disc = 0.9964 obtained above to
compute implied volatilities, we first show that the Black-Scholes formulas (8.19-

8.21) can be written in terms of PV F and disc without any dependence on r, g, or
the spot price S; see (8.35-8.37).
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Recall from (8.25) that PVF = Fe™"T. Since F = Set"~97T it follows that

? PVEF = Fe ™7 = Selr=9T .7
Se 9", (8.28)

Then, using (8.24) and (8.28), the Black-Scholes formulas (8.19) and (8.20) can
be written as

Cps = PVF-N(dy)— K -disc- N(dz); (8.29)
Pps = K- disc- N(—dg) — PVF - N(~d1). (8.30)

Moreover,

In (%) + (7’ - )T

I

5 (r—ayr  _ S r-or
ln( >+ln(e ) = (e (8.31)
Se~ T .\ Se4T
ln< 7 ) = In (——Ke—TT
PVF '
= In (K'disc) (8.32)

where for (8.31) we used the facts that In(e®) = z for any = and In(a)+1In(b) = In(ab)
for any a,b > 0, and for (8.32) we used (8.28) and (8.24), i.e., Se™?" = PVF and
—rT

e = disc.
Then, from (8.21) and (8.32), we obtain that

=

o2
o - ln(%)+(7’——Q)T+ T _ () +”‘/T- (8.33)
ovVT oVT oVT 2
(ZYE)  oJT
d _ dy — T — K-dise/ __ . 8.34) -
. s e s (8.34)

From (8.29), (8.30), (8.33), and (8.34), we conclude that the Black—Scholes option
values can be written as functions of PV'F, disc, K, T, and ¢ as follows:

Cps(PVF,disc, K,T,0) = PVF-N(di)~ K -disc- N(dz); (8.35)
Pps(PVF,disc, K,T,0) = K -disc- N(—dy) — PVF-N(—~di), (8.36)

where

dy =

In (BYE. In (YL
d = n(K-dzsc) _I_Uf; n(K-dzsc) _U\/T—, (837)

, B oVT ovVT 2

Since K and T are known and PV F and disc have been computed using least
squares, see (8.27), we can use Newton's method to solve either

Cps(PVF,disc,T,o) = Cm (8.38)

or
Pps(PVF,disc,T,0) = Pn . (8.39)

for o = 0imp for every option from Table 8.2.
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For call options, we look at (8.38) as a function of only one variable, o. Then,
finding the implied volatility for a call option requires solving the nonlinear problem
fe(z) =0, ' (8.40)

using Newton’s method, where 2 = ¢ and
fe(z) = PVF-N(di(z)) — K - disc- N(d2(z)) — Cm, (8.41)

with di(x) and dz(x) given by (8.37), i.e.,

dl(a:) — ln(lf-giic) +wﬁ, dz(x) _ ln([f,‘ﬁ;c) _ :c\/T
avT 27 oV/T 2

The value of = thus computed is the implied volatility ¢imp.
Note that differentiating the function fc(z) with respect to x is the same as
computing the vega of the call option, which is equal to

vegas = Se"qT\/g exp <—M> ; (8.42)

see (10.101). Then, since Se™% = PV F, we obtain that

fo(a) = PVF\/; exp (~£‘—ll—g@£). (8.43)

The Newton’s method recursion for solving (8.40) is

_ folzx)
AL (8.44)

where the functions fo(z) and f&(z) are given by (8.41) and (8.43), respectively.

Tk+1 = Tk

Similarly, for put options we look at (8.39) as a function of only one variable, o.
Then, finding the implied volatility for a put option requires solving the nonlinear
problem

fe(z) = 0, (8.45)

where £ = o and
fe(x) = K-disc- N(—dz(z)) — PVF-N(—di(z)) — Pm, (8.46)

with di(2) and da(z) given by (8.37), i.e.,

dl(T) — ln(lf‘ézi‘c) _I_m\/,j—‘— dz(w) — ln(%gz) _ (E\/T
’ VT 2 VT 2

Differentiating the function fp(z) with respect to z is the same as computing the
vega of the put option, which is equal to

vegap = Se‘qT\/g exp <~—@—(§))—2) ; (8.47)

see (10.102).
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Then, since Se 9T = PV F, we obtain that

folz) = PVF\/;Z; exp (—(—‘?-1%")—)2> . (8.48)

Note that fp(z) = fo(x), since vegap = vegac:-
The Newton’s method recursion for solving (8.45) is

fr(zk)

Tp+1 = Tk —
folzx)’

(8.49)

where the functions fp(z) and fp(z) are given by (8.46) and (8.48), respectively.

A good initial guess for Newton’s method is 25% volatility, i.e., zo = 0.25, and the
algorithm is stopped when two consecutive approximations in Newton’s method are
within 10~8 of each other; see the pseudocode from Table 8.3 for finding the implied
volatility for both call and put options, i.e., for solving either (8.44) or (8.49).

Table 8.3: Pseudocode for computing implied volatility

Input:
m = option price
/] Vin = Cim for call implied vol; Vin = P for put implied vol
K = strike price of the option
T = maturity of the option i
PV F = present value of the forward price of the underlying asset
disc = discount factor corresponding to time T’
tol = tolerance for Newton’s method convergence
fBs(z) = Black-Scholes option value; ¢ = volatility
/] fes(z) = fo(z) for calls; fps(z) = fp(z) for puts
/] fes(e) = folz) = fp()

Output:
Tnew = implied volatility

xg = 0.25; // initial guess: 25% volatility
Tew = L0} Told = Lo — 1; tol = 1078
while (|Znew — Tota| > tol)
Told = Tnew
fBs(®otd) — Vm

Inew = Lold =TT (wora)

end

For the options from Table 8.2, note that the options maturity is T = %g—g-, ie.,
the ratio of 199, the number of trading days between March 9, 2012 and December
22, 2012, and 252, the total number of trading days in a year. Using the values
PVF = 1349.54 and disc = 0.9964 computed using least squares and the Newton’s
method from Table 8.3, we obtain the implied volatilities from Table 8.4.

A consequence of the Put—Call parity is that the theoretical values of implied
volatilities of calls and puts with the same strike are equal. Note that, indeed, the
implied volatilities from Table 8.4 corresponding to calls and puts with the same
strike are nearly identical.
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Table 8.4: Implied volatiles for SPX options

Strike | Implied Vol | Implied Vol || Strike | Implied Vol | Implied Vol
Call Put Call Put
1175 25.73% 25.72% 1375 19.69% 19.66%
1200 24.96% 24.92% 1400 18.94% 18.94%
1225 24.19% 24.16% 1425 18.26% 18.25%
1250 23.44% 23.40% 1450 17.53% 17.68%
1275 22.63% 22.65% 1500 16.34% 16.24%
1300 21.86% 21.91% 1550 15.05% 15.08%
1325 21.15% 21.20% 1575 14.48% 14.47%
1350 20.41% 20.43% 1600 14.13% 14.02%

8.2 Linear regression: ordinary least squares for time
series data

Linear regression for time series data (also called ordinary least squares for time series
data) requires finding the best approximation of the time series data of a random
variable by a linear combination of the time series data of other random variables
and a constant vector.

Let Y and X, X3, ..., X, be random variables given by time series data at N
data points t;, 2 = 1 : N. Assume that the sample covariance matrix corresponding
to the time series data for X1, Xs, ..., X, is nonsingular, or, equivalently, that the
column vectors of the time series data for X1, X3, ..., X, and the N x 1 column
vector with all entries equal to 1 are linearly independent; cf. Theorem 7.2,

We look for the best linear approximation of the time series data for Y by a linear
combination of the time series data for X1, X», ..., X, plus a constant vector, i.e.,
we look for constants a, b1, ba, ..., by such that

Y(t1) a3 buXi(th)
Y (t2) N a+ Zk=1 by Xk (t2)
Y(r'izv) a+ Zzzl.kak(tN)
Y (t1) a Xk (t1)
Y (2 n Xk (t2
= (: ) & L:L + Zbk k( :
Y(w.ﬁN) a = Xk(tN)
Y(t1) 1 X1(t1) Xn(t1) a
Y (ta2) 1 Xi(t2) Xn(t2) by
= : ~ : : : . (8.50)
Y (tn) 1 Xi(tw) Xn(tn) bn

Denote by Ty and Tx, the column vectors of the time series data for the random

variables Y and X, for k = 1 : n, respectively, i.e.,

Ty

= (Y(t:))i=1:n;

(8.51)
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Tx, = (Xu(ts))i=nv, YE=1:m, (8.52)

and denote by
Tx = col(Tx, ) pe1m (8.53)
the N X n matrix of time series data for X1, X2, ..., Xn. Denote by b = (bi)i=1:n,

the n x 1 coefficients vector, and by 1 the column vector of size N with all entries
equal to 1.
Then, (8.50) can be written as follows:

Ty ~ (1 Tx, ... Tx,) (g) = (1 Tx) (g) (8.54)

Note that (8.54) is a least square problem of the form

b

ym~Ar with y=Ty; A=(1 Tx) :E:(a ) (8.55)

Since the sample covariance matrix corresponding to the time series data for Xy,
Xs, ..., Xn is nonsingular, it follows from Theorem 7.2 that the columuns of Tx and
the vector 1 are linearly independent. Then, the least squares problem (8.55) has a
unique solution = = (A*A)~' Aty see (8.16), and therefore

( g ) = '(A"A)"lAt Ty, where A= (1 Tx). (8.56)

Ezample: For 15 consecutive trading days, the yields of the 2-year, 3-year, 5-year,
and 10-year treasury bonds were, respectively:

2-year 3-year b-year 10-year
4.69 4.58 4.57 4.63
4.81 4.71 4.69 A.T3
4.81 4.72 4.70 4.74
4.79 4.78 4.77 4.81
4.79 4.77 4.77 4.80
4.83 4.75 4.73 4.79
4.81 4.71 4.72 4.76
4.81 4.72 4.74 4.77
4.83 4.76 4.77 4.80
4.81 4.73 4.75 4.77
4.82 4.75 4.77 4.80
4.82 4.75 4.76 4.80
4.80 4.73 T 4.75 4.78
4.78 4.71 4.72 4.73
4.79 4.71 4.71 4.73

Find a linear regression for the yield of the 3-year bond in terms of the yields of
the 2-year, 5-year, and 10-year bonds.

Answer: Denote by Ts, T3, Ts, and Tip the 15 x 1 time series column vectors for
the 2-year, 3-year, 5-year, and 10-year yields from the data above, respectively. We
are looking for coefficients a, b1, b2, bs corresponding to the solution to the ordinary
least squares problem

Ts ~ al + biTo + bT5 + bsTio,
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where 1 is the 15 x 1 column vector with all entries equal to 1. This can be written
in least squares form as y ~ Az, with

a
T = Z; i oy =T A= (11275 Tw);
bs
in other words,

4.58 1 469 4.57 4.63

4.71 1 481 4.69 4.73

4.72 1 481 4.70 4.74

4.78 1 479 477 4.81

4.77 1 479 4.77 4.80

4.75 1 483 4.73 4.79

: 4.71 1 481 4.72 4.76

y = 472 |; A = 1 4.81 4.74 477

4.76 1 4.83 4.77 4.80

4.73 1 481 475 4.77

4.75 1 482 4.77 4.80

4.75 1 482 4.76 4.80

4.73 1 4.80 4.75 4.78

4.71 1 478 4.72 473

4.71 1 479 4.71 473

Recall from (8.16) that the solution to the least squares problem y ~ Az is ¢ =
(AtA)~! Aly. By using the Cholesky solver linear_solve_cholesky from Table 6.2, we
compute x = linear_solve_cholesky(A*A,Aty) with A and y given above, we obtain
that

a 0.0123
_ by _ 0.1272
= ba = 0.3340
bs 0.5298

We conclude that the ordinary least square linear regression for the yield of the
3-year bond in terms of the yields of the 2-year, 5-year, and 10-year bonds is

T3 ~ 0.0123-1 + 0.1272 T> + 0.3340 75 + 0.5298 T10. 0O

8.3 Ordinary least squares for random variables

The ordinary least squares problem for random variables requires finding the best
approximation of a random variable by a linear combination of other random variables
and a constant.

We look for the best approximation of Y by a linear combination of X1, X, ...,
X, plus a constant, i.e., we look for constants a, b1, ba, ..., by such that

Y — (a+ Z b;X;) has mean 0 and minimal variance.
i=1


Highlight
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Let py and px, be the means of Y and Xy, for k = 1 : n, respectively, and let
px be the n x 1 column vector ux = (ix, )k=1:7.

Lemma 8.1. Let X1, Xa, ..., X, be random variables on the same probability space
with nonsingular covariance matriz Sx, and let Y be another random variable on the
same probability space. The best approzimation of Y by a linear combination of X1,
Xoa, ..., Xn plus a constant, i.e., such that the random variable

Y — (a + Z bin-) has mean 0 and minimal variance,

where a, b1, b2, ..., bn are constants, is given by
b = (Zx) tovx (8.57)
a = py —ux () oy, (8.58)

where b = (b;)iz1:n and ov,x = (con(Y, Xi))i=1:m s the covariance vector of Y and
X1, Xo, ..., Xn.

Proof. Denote by uy and px, the mean of ¥ and of X, respectively, for k=1:n.

Then,
- (C’«+ZbiXi):l = py —a-— Zbiﬂxm
=1

=1

and therefore E [Y — (a + Y7, b:X:)] = 0 if and only if

a = [y — Zbi/—bxi- (8.59)
Note that
var <Y ~(a+) bp(,-)) = var <(Y — > bXi) — a)
i=1 i=1
= var <Y - sz‘Xi) ,
i=1

since var(X — a) = var(X) for any random variable X and for any constant a.
Thus, we are looking for constants b;, ¢ = 1 : n, such that

ar (Y - ZbiXi> is minimal. (8.60)
=1

Recall that, for any random variables X and Y over the same probability space,
var(Y — X) = var(Y) — 2cov(Y, X) + var(X).
Then,

ar <Y — Xn:biXi) = var(Y) — 2cov (Y, ibin) + var <2": bZX1>
i=1

=1 i=1

var(Y) — 221} cov(Y, X;) + var (i: b1X1> (8.61)

=1

I}
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Let b = (b:)i=1:n be the coeflicients column vector, and let

cov(Y, X1)
oyvx = (cov(Y, X;))izm1n =
cov(Y, X,)
be the covariance vector of ¥ and X3, Xa, ..., Xn.
From (1.5), we find that
> bicov(Y, Xi) = obxb. (8.62)
i=1
Let x be the covariance matrix of the random variables X, Xa, .oy Xn, and

recall from (7.25) that
var (Z b,;Xi> = b'Exb. (8.63)
=1
From (8.61-8.63), we obtain that
var (Y - Z biXi> = var(Y) - 20y xb + b'Exb. (8.64)
i=1
Thus, minimizing var (Y — % biX:), see (8.60), is equivalent to finding a vector
b € R™ such that
var(Y) — 20y xb 4+ b*Exb  is minimal. (8.65)
Let f:R™ — R be the function given by
f(@) = var(Y) — 20% xz + 2'Sxz, VxR

Then, solving (8.65) is equivalent to finding a minimum point for f(z).
Recall from (10.43) and (10.47) the following gradient formulas:

D(C'%) = CY
D(z'Az) = 2(Az)',

for any constant column vector C' of size n and for any n X n symmetric matrix A.
Then, the gradient Df(z) of f(z) is

Df(x)

D (var(Y)) - 2D (oy,xz) + D (2'Sxz)
= —2Q§f,x + 2(2x$)t
= 2(Zxo—ovx)"; (8.66)

note that D (var(Y")) = 0 since var(Y) is not a function of z.

Any minimum point zo of f(x) is also a critical point of f(z), i.e., a solution to
Df(zo) = 0. From (8.66), we find that, if Df(z¢) = 0, then Yxxzo = oy x, which,
since we assumed that the covariance matrix Yx is nonsingular, has the unique
solution

o = (Zx) ' oyx. (8.67)
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To classify the critical point zo given by (8.67), we compute the Hessian of f(z).
Recall from (10.45) and (10.48), respectively, that D?(C*z) = 0 and D? (aztA:B) = 2A.
Thus, D?f(z) = 2%x, and therefore D% f(zo) = 25x.

The covariance matrix Lx is symmetric positive definite since it is nonsingular.
Then, o is a local minimum point for the function f (z), and since zo is the only
critical point of the function f(z), we conclude that zo is a global minimum point
for the function f(x).

Thus, the vector b minimizing (8.65) is b = zo given by (8.67), i.e.,

b = (x) 'ovx. (8.68)

Let px = (tux,)i=1n. Then, from (8.59) and (8.68), we find that

a = py— Y b = py —pxb
=1
= py — e (Ex)nl oYy,x- (8.69)

From (8.68) and (8.69), we conclude that the constants a, b1, b2, - .., bn such that
the random variable Y — (a + Y7, b: X ;) has mean 0 and minimal variance are given
by (8.57) and (8.58). O

Note that the formulas (8.57) and (8.58) for the coefficients of ordinary least
squares for random variables are the random variable versions of the formulas (8.80)
and (8.81) for time series data.

8.4 The intuition behind ordinary least squares for time
series data

The solution (8.56) from section 8.2 for the linear regression of time series data, while
applicable in practice, lacks intuition. We provide this intuition here by expressing
a and b from (8.56) in terms of the time series data for ¥’ and for Xx, k= 1:mn, and
by highlighting the connection to the solution to the ordinary least squares problem
for random variables; see Lemma 8.2 and Lemma 8.1.

Let fiy and fix, be the sample means of ¥ and X, for k = 1 : n, respectively,

i.e.,

N

G o= L N Lo

o= 5 ;Y(tz) =« VT (8.70)
N

. 1 1

Bxe = & YoXilt) = 1'Tx,, Vk=1:n, (8.71)
i=1

where Ty and T, are the column vectors of the time series data for Y and X given
by (8.51) and (8.52), respectively, and let fix be the n x 1 column vector

Ix = (fixy)k=1:n- (8.72)
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Also, let Ty,x be the sample covariance vector of Y and X1, ..., X, given by
cov(Y, X1)
Oyx = o (8.73)
cov(Y, Xn)

Let Ty and Tx, be the column vectors of the time series data for the random
variables Y and X normalized to mean equal to 0, for k = 1 : n, respectively, i.e.,

Ty = (Y{t)—[y)umpny = Ty —Hv1; (8.74)
Txk - (Xk(tl) - ﬁxk)ith = TXk - ﬁxkl, (8'75)

and let _
Tx = col (Txk)k:hn . (8.76)
Lemma 8.2. LetY and X1, X2, ..., X, be random variables given by the N X 1 time
series data vectors Ty and T'x,, Tx,, ..., Tx,, respectively. Let Tx = col(Tx,);c1.p-

Assume that the sample covariance matriz Yx corresponding to the time series data
for X1, Xa, ..., Xn is nonsingular.
The solution a and b= (b;)i=1:n to the linear regression problem

Ty ~ (1 Tx, ... Tx,) ( ‘; ) (8.77)
= al+0uTx, +b2Tx, +... +b.Tx,,
where 1 is the N x 1 column vector with oll entries equal to 1, is
b = (ToTx) 'TiTy; (8.78)
a = fv - 5Ty Ty, (8.79)

where Ty and Tx are given by (8.74) and (8.76), respectively.
Moreover, (8.78) and (8.79) can be written as

b (ix) by, (8.80)

Il

It

@ = fiy—fk (ix)_l Gyx, (8.81)

where lly, [ix, and Oy,x are given by (8.70), (8.72), and (8.73), respectively, and Sx
is the sample covariance matriz given by (7.42).

The results of Lemma 8.2 connect the linear regression ordinary least squares so-
lution for time series data to the ordinary least squares solution for random variables
from section 8.3; see (8.57) and (8.58).

Proof. Since Tx = col (T'x,),_,.,, the ordinary least squares problem (8.77) can
also be written as follows:

Ty ~ (1 Tx) ( g ) . (8.82)
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Recall from section 8.1 that the solution to the least squares problem y ~ Az
requires solving the linear system A‘y = A’ Az. Problem (8.82) corresponds to

y~ Az with y=Ty, A=(1 Tx), z = ( g >,
and therefore Ay = A*Az can be written as

(2 )m=(m)am(s) (5.53)

By looking only at the first row of (8.83), we obtain that

1Ty = 1* (1 Tx) ( b ) = 1° (la+ Txb)
= 1'1a+ 1*Txb. (8.84)
From (8.70), we find that '
1Ty = Niy. (8.85)
Also, note that )
11 = ﬁ} = N. (8.86)
i=1

Recall that Tx = col (T, ),_,.,- From (8.71), it follows that 1°Tx, = Njix, for
all k= 1:n, and therefore 1°Tx is the following row vector:

1'Tx = (1'Tx, 1'Tx, ... 1'Tx,)
= (Npx, Nix, ... Npx,)
= N(bx; Bxz --- Bx,) )
= Np&, (8.87)
where it = (ix, 6ix, --- [ix.); see (8.72).

From (8.85), (8.86), and (8.87), we obtain that (8.84) can be written as
_ Niy = Na + Ni4b. (8.88)
By solving (8.88) for a, we obtain that
| a = Jiy — Jikb. (8.89)

Note that the ordinary least squares problem (8.82) can be written as
Ty = (1 Tx) < g ) = al + Txb. (8.90)

By substituting the expression (8.89) for a into (8.90), we find that
Ty =~ al + Txb
= Ty Ayl — (f%b)1 + Txb
— Ty —Lyrl Txb — (uxb)l, (8.91)

2

2
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Recall from (8.74) that

Ty =iyl = (Y(t) =By )iy = Tv- : (8.92)

Also,

— (Axb)1

Z b Tx, — (Z bklixk>

k=1 k=1

= Zkaxk — Zbkﬁxkl
k=1 k=1

= > be(Tx, - fix, 1)

= > blx, (8.93)
k=1
= Txb, (8.94)

where, for (8.93), we used (8.75), and, for (8.94), we used (1.7) with' A = Tx =
col (Txk)kzl:n and v = b = (bg)k=1:n. ’
Thus,
Tyb — kbl = Txb, (8.95)

and, from (8.92) and (8.95), it follows that the least squares problem (8.91) can be
written as
Ty =~ Txb. (8.96)

Note that (8.96) is a least squares problem y ~ Az with y = Ty, A = Tx,
and z = b. Recall from (8.16) that the solution to this least squares problem is
z = (A*A)~1 A%y, and therefore

= (TxTx) ‘TxTy. (8.97)

Note that the matrix —T;Tx is nonsingular since the sample covariance matrix

1
x = T T Tx (8.98)

el

corresponding to the time series data for X1, Xs, ..., X, was assumed to be non-
singular; see (7.60).
Also, note that

ov(Y, Xy) = — Iy )(Xi(t:) — Bx,,)
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Thus, the sample covariance vector 0y,x of Y and X1, X2, ..., Xy is
e =t s -
oV (Y, X1) v lx Ty , T,
a = . = . = . T
Jy,x R _.t _ N_1 ——i Y
cov (Y, Xn) +=Tx, Ty Tx,
= N—l——I TxTv, ' (8.99)

since Tx = col (T'x,,),_, .., and therefore Ty = row ((ij)t)jzlm.

From (8.98), we obtain that ToTx = (N — 1)Ex,-and therefore

o -1 1 ~ -1
TxT) " = = (5x) (8.100)
Also, from (8.99), it follows that
ToTy = (N —1)5yx. (8.101)

From (8.97), (8.100), and (8.101), we obtain that

. e ~ \ -1
b = (T;TX)_lT;cTY = (Ex) Ty,x, (8.102)

which is the same as (8.80), and, from (8.89) and (8.102), we obtain that
~ o\ 1
a = fy — ik (Ex) Oy, x,
which is the same as (8.81). O

The formulas (8.80) and (8.81) for the coefficients of ordinary least squares for °
time series data are the time series versions of the formulas (8.57) and (8.58).

8.5 References

The solution to a linear system associated to a least squares problem coming from
linear regression with application to cartography motivated the introduction of the
Cholesky decomposition by André Cholesky early in the 20-th century; cf. Brezin-
ski [9)].

A linear algebra treatment of least squares is included in Golub and Van Loan [18].
A statistical approach to least squares can be found in Lai and Xing [25].

A thorough treatment of implied volatility modeling and estimation can be found
in Gatheral [15]. For details on implied volatility and its connection to Put-Call
parity see Stefanica [36].
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8.6 Exercises

1. Denote by z* the solution to the ordinary least-squares problem y.% Az, where
A is an m X n matrix with m > n, ¥ is an m x 1 column vector, and x is an
n X 1 column vector.

Show that 2™ is the projection of the vector y onto the space generated by the
columns of A, or, equivalently, show that the vector y — Az* is orthogonal to
the space generated by the columns of A. In other words, show that

(y—Az",Az) = 0, VzeR"™

Note: Recall that the space generated by the columns of A is {Az | z € R"},
and is also called the range of the matrix A.

2. Recall from the example from the book that, on March 9, 2012, the mid prices
of the S&P 500 options maturing on December 22, 2012, were as follows:

Call Price Strike Put Price

225.40 1175 46.60
205.55 1200 51.55
186.20 1225 57.15
167.50 1250 63.30
149.15 1275 70.15
131.70 1300 77.70
1156.25 1325 86.20
99.55 1350 95.30
84.90 1375 105.30
71.10 1400 116.55
58.70 1425 129.00
47.25 1450 143.20
29.25 1500 173.95
15.80 1550 210.80
11.10 1575 230.90
7.90 1600 252.40

The spot price of the index corresponding to these option prices was 1,370. For
the options above, the market estimates for the annualized continuous dividend
yield of the S&P 500 index and for the risk—free rate were ¢ = 0.0193 = 1.93%
and r = 0.0015 = 0.15%, respectively.

(i) Use Newton’s method to compute the implied volatilities for each of the
options.

(ii) How do these values compare to the implied volatilities obtained by using
ordinary least squares to compute the discount factor and the present value of
the forward price?

(iii) How do the implied volatilities of calls and puts with the same strike
compare to each other? .
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3. On May 22, 2014, the bid and ask prices of the S&P 500 options maturing ogn

January 17, 2015, were as follows:

Bid Price Ask Price Strike Bid Price Ask Price

Call Call Put Put
431.20 434.40 1450 8.90 10.20
384.10 387.40 1500 11.60 13.10
337.90 341.20 1550 15.20 16.90
292.80 296.20 1600 19.90 21.80
228.30 231.10 1675 29.70 31.40
207.50 210.10 1700 33.60 35.50
167.60 170.00 1750 43.50 45.40
148.90 151.30 1775 49.40 51.50
130.60 132.80 1800 56.50 58.10
113.20 115.30 1825 63.60 65.70
96.80 98.60 1850 71.90 74.20
81.50 83.20 1875 81.40 83.50
67.10 69.00 1900 92.10 94.50
54.20 55.90 1925 103.80 106.30
32.80 34.50 1975 132.40 134.70
24.50 25.90 2000 149.20 151.90
12.40 13.60 2050 186.90 189.70

5.60 6.50 2100 230.00 232.40

The spot price of the index corresponding to these option prices was 1, 894.

(i) Compute the mid prices of the options, i.e., the average of the bid price and
ask price of the options. Use ordinary least squares to compute the present
value of the forward price PV F and the discount factor disc corresponding to
the mid prices of the options.

(ii) Compute the implied volatilities of these options. How do the implied
volatilities of calls and puts with the same strike compare to each other?

. Recall that the vega of an option measures the sensitivity of the price of

the option to changes in volatility. In other words, for call and put options,
vega(C) = Z£ and vega(P) = &£

=4
Use the Put-Call parity

C—-P = Se 7 4 KT

to show that
vega(C) = vega(P).

. The goal of this exercise is to derive the Black-Scholes formulas for the vegas

of plain vanilla European calls and puts.

In the Black—Scholes framework, an underlying asset with spot price S follows a
lognormal distribution with volatility o and pays continuous dividends at rate
g. Denote by r be the risk—free interest rate, assumed to be constant. The
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Black—Scholes values of a European call option and of a European put option
with strike K and maturity T are

Cps(S,K,T,0,rq) = Se TN(dy) ~ Ke ""N(da);
Pps(S,K,T,0,m,q) = Ke ""N(—dz)— 8e " N(—d1),

respectively, where

z »2
N(z) = #/ e 7 dx

denotes the cumulative distribution of the standard normal variable, and

ln(§)+(r~q+—“—;)T

d1= a\/f—f ) dzzdl—aﬁ.
(i) Use Chain Rule to show that
_ 00 o g Od; —rT Ayt Od,
vega(C) = e = Se N'(d1) 5 Ke N'(d2) 5o
(ii) Show that
, 1 L2
N'(z) = ——e™ 7,
(2) o

and use this fact to prove that

Se™ T N'(d1) = Ke ™ N'(d2).

(iii) Show that

I}

dZ
vega(C) Se~iT ¢~ VT,

vega(P) Se~9T =2 VT.

6. The goal of this exercise is to show that the theoretical values of the implied
volatilities of plain vanilla European call and put options with the same strike
and maturity are equal.

Denote by Cgs(S, K,T,0,r,q) and Pps(S, K,T,o,r,q) the Black-Scholes val-
ues of a European call option and of a European put option, respectively, with
strike K and maturity T" on an underlying asset following a lognormal distri-
bution with volatility o, with spot price S, and paying dividends continuously
at the rate g, if interest rates are constant and equal to r. Let Cy, and P, be
the market prices of a call and of a put option, respectively, with parameters
S, K, T, r,and q. ‘

The implied volatility oimp,c corresponding to the price C is the solution. to

CBS(Uimp,C) = Cn.
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The implied volatility cimp,p corresponding to the price P is the solution to

Pps(0imp,p) = Pm.

Note that, here and below, Cgs(o) and Pgs(c) are shorthand notations for
Crs(S,K,T,0,1,q) and Pps(S, K,T,o,r,q), respectively.

(1) Use the facts that the Black—Scholes values of put and call options satisfy
the Put—Call parity for any value o > 0 of the volatility, i.e.,

Cgs(o) — Pps(o) = Se” T — Ke T,

and that the market prices of put and call options satisfy the Put-Call parity

as well, i.e.,

Cm — P = Se™ 7 — Ke ™7,

to conclude that
PBS(Uimp,P) = PBS(Uimp,C)-

(ii) Show that the Black—Scholes value of a put option is a strictly increasing
function of volatility, and conclude that the implied volatilities corresponding
to put and call options with the same strike and maturity on the same asset
must be equal, i.e.,

Timp, P = Oimp,C -

Recall the example from the book where for 15 consecutive trading days, the
yields of the 2-year, 3-year, 5-year, and 10-year treasury bonds were, respec-
tively:

2-year 3-year 5-year 10-year

4.69 4.58 4.57 4.63

4.81 4.71 4.69 4.73

4.81 4.72 4.70 4.74

4.79 4.78 4.77 4.81

4.79 4.77 4.77 4.80

4.83 4.75 4.73 4.79

4.81 4.71 4.72 4.76

4.81 4.72 4.74 4.77

4.83 4.76 4.77 4.80

4.81 4.73 4.75 4.77

4.82 4.75 4.77 4.80

4.82 4.75 - 4.76 4.80

4.80 4.73 4.75 4.78

4.78 4.71 4.72 4.73

4.79 4.71 4.71 4.73

Denote by T%, T3, Ts, and Tip the time series data vectors corresponding to the
yield of the 2-year, 3-year, 5-year, and 10-year treasury bonds, respectively.

(i) Find the coefficients a, b1, bz, bz of the linear regression for the yield of the
3-year bond in terms of the yields of the 2-year, 5-year, and 10-year bonds, i.e.,
find a, b1, b2, bs corresponding to the solution to the ordinary least squares
problem

T3 ~ al + biTo + b2Ts5 + b3Tio,
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where 1 is the 15 x 1 column vector with all entries equal to 1. Let
Tscr = al + Ty + bTs + b3Tio.
Find the approximation error
errorrr = |75 — T3,0rl|
of the linear regression.

(ii) Compute the linear interpolation values of the 3-year yield by doing linear
interpolation between the 2-year yield and the 5-year yield at each data point.
Denote by T3, tincar_interp the time series vector of these values. In other words,

2 1
T3 tinear_interp = =12 + =Tx.
3 3
Find the approximation error
€ITOr [inear_interp — ”TS - TB,[inear-interp”

of the linear interpolation.

(iii) Compute the cubic interpolation values of the 3-year yield by doing cubic
spline interpolation between the 2-year, 5-year, and 10-year yield at each data
point. Denote by 75 cupic_interp the time series vector of these values.

Find the approximation error
€ITOr cubic_interp — ”TS - T3,cubic-inte'rp||
of the cubic interpolation.

(iv) Compare the approximation errors from (i), (ii), and (iii), and comment
on the results.

8. The file financials2012.zlsz from www.fepress.org/nla-primer contains the end
of week adjusted closing prices for the stocks of the following financial compa-
nies: JPM; GS; MS; BAC (Bank of America); RBS; CS; UBS; RY (RBC); BCS
(Barclays) between January 11, 2012, and October 15, 2012.

(i) Compute the weekly percentage returns of these stocks.

(ii) Find the linear regression of the JPM returns with respect to the returns
of the other stocks. What is the approximation error of this linear regression?

(iii) Find the linear regression of the JPM returns with respect to the returns
of the other American financial companies, i.e., with respect to GS, MS, and
BAC. What is the approximation error of this linear regression?

(iv) Find the linear regression of the JPM. stock prices with respect to the prices
of the other stocks. What is the approximation error of this linear regression?
How does it compare with the approximation error of the linear regression of .
the JPM returns computed at (i1)? '






Chapter 9

Efficient portfolios. Value at Risk. Portfolio
VaR.

Efficient portfolios. Markowitz Portfolio Theory.
Blueprints for finding efficient portfolios.

Minimum variance portfolios. Minimum variance portfolios and the tangency port-
folio.

Maximum return portfolios. Maximum return portfolios and the tangency portfolio.
Minimum variance portfolio with no cash position.
Value at Risk (VaR). Portfolio VaR.

Subadditivity of VaR and counterexample.

9.1 Efficient portfolios. Markowitz portfolio theory.

Counsider a portfolio invested in n assets and with a cash position. Let w; be the
weight of asset 4 in the portfolio, for ¢ = 1 : n, i.e., w; represents the proportion of the
portfolio invested in asset 4. Then, the weight of the cash position of the portfolio is

Weash = 1 _Zwi- (91)
i=1

Exzample: Consider a $80 million portfolio which is invested in three assets, as follows:
a long $50 million position in asset 1, a short $20 million position in asset 2, a long
$25 million position in asset 3, and with a long $25 million cash position.! The
weights w1, w2, w3, and weqsn of the three assets and of the cash position are:

50 20

= — == (.625 = .50%: == = —0.25 = —25%:
w1 0.625 62.50 ('H w2 g 0.25 5 03
3 = 30 — Y. — . 0y cash — 80 — Y. ad = . 0.

YThe asset position in the portfolio is $50mil + (-$20mil) 4 $25mil = $55mil, and therefore
the cash position is $80mil - $55mil = $25mil.

251
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We assume that it is possible to take arbitrarily large long or short positions in
any of the assets, and therefore the weights w; are not required to be positive or to
be smaller than 1.

Let R be the return of the portfolio over a fixed period of time, and let pr = E[R]
be the expected value® of R. Let R; be the return (over the same period of time) of
asset 4, and let u; = E[R;] be the expected value of R;, for ¢ =1:n. Let 7y be the
risk—free return of the cash position in the portfolio over the same period of time.

The return of the portfolio is equal to the weighted average of the returns of the
assets and of the cash position, i.e.,

R = ZUJsz + Weash?Tf} (92)

=1

for completeness, a proof of (9.2) is given at the end of this section.
By taking expected values in (9.2) and using (9.1), we find that

n .
uRr = Zwiﬂi + WeashTf
i=1 :

n

= Zwiui + (1—2101-)7“;
i=1

i=1

= 75 4+ > wilpi—ry) (9.3)

i=1

Let w = (w:)i=1:n be the vector of the asset weights in the portfolio, and let
p = (14:);_1., be the vector of the expected values of the returns of the n assets.
Denote by 1 the n x 1 column vector whose entries are all equal to 1, and let

T = (Bi=tn = (e —7f)i=tin = p—7f1 (9.4).

be the n x 1 column vector of the excess expected returns of the n assets over the
risk—free rate. Then,

Y wim = Ew, (9.5)
i=1

see (1.5), and (9.3) can be written in vector form using (9.5) as follows:

KR o+ Y wilpi—rg) = rp o+ > wil,
=1 i=1
= r; + gw. (9.6)
Also, note that (9.1) can be written in vector form using (1.5) as

Weash = 1 —1'w. (9.7)

Let or be the standard deviation of the return R of the portfolio, and let o; be
the standard deviation of R;, for i = 1 : n. Let p;, be the correlation between the

2Throughout this book, we also refer to the expected value of the return of a portfolio as the
“expected return” of the portfolio.
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' returns R; and Rg, for 1 < j £ k < n, and let .z be the n x n covariance matnx of
the returns of the n assets given by

Yr(j, k) = cov(R;,Re) = ojorpik, V1<j#k<n;
Yr(i,i) = var(Ry) = o7, Vi=1:n.

Since the risk—free rate 7y is a constant, we obtain from (9.2) that

0% = var(R) = var (szBa),
i=1

and, using (7.25), we find that the variance of the return of the portfolio can be
written in matrix formulation as follows:

0% = w'Srw. (9.8)

A natural assumption we make throughout this chapter is that the return of none
of the assets can be replicated by using the other n — 1 assets and cash.® In other
words, we assume that there is no asset whose return is a linear combination of the
returns of the other n—1 assets and the risk—free return. Note that, from Lemma 7.5,
it follows that this assumption is equivalent to assuming that the covariance matrix
Y.p is nonsingular. V

An important question is how should an efficient portfolio be set up?* In other
words, what should the weights w;, ¢ = 1 : m, of the assets and the weight Weqsh
of the cash position be in order to obtain a portfolio (called a minimum variance
portfolio) with the smallest variance of return, given a fixed expected return, or to
obtain a portfolio (called a maximum return portfolio) with the highest expected
return, given a fixed variance of the return?

Minimum variance portfolio:
Given pp, find Weasn and ws, ¢ =1 :n, with ur = pp, such that o% is minimal.

Maximum return portfolio:
Given op, find 'lUcash and wi, i =1:n, with o% = crp, such that pr is mazimal.

In section 9.2, we include the solutlons to the minimum variance portfolio problem
and to the maximum return portfolio problem, which will be derived in sections 9.3
and 9.4, as well as the, tangency portfolio formulation of these solutions. The pseu-
docodes for finding the efficient portfolio allocation for both the minimum variance
portfolio problem and the maximum return portfolio are also included in section 9.2.

Note that the variances of asset returns and the covariance matrix for asset re-
turns can be estimated from historical data. However, estimated expected returns
accurately from historical is not feasible; see, e.g., Fabozzi and Markowitz [14] for
alternative approaches to finding asset allocations for efficient portfolios.

We conclude this section by proving formula (9.2).
Let V(0) be the value at time 0 of a portfolio invested in n assets and with a cash
position. Let V;(0) be the value of the portfolio position in asset 4 at time 0, for

3Note the similarity with the non—ledundancy of the securities from a one period market
model see Chapter 3.

Fmdlng efficient portfolios is one of the fundamental problems given a theoretical answer by
the modern portfolio theory of Markowitz and Sharpe; see Markowitz [28] and Sharpe [35] for
seminal papers.
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i=1:n, and let Vzosn(0) be the value of the cash position in the portfolio at time
0. Similarly, let V(T') be the value of the portfolio at time T, let Vi(T) be the value
of the portfolio position in asset i at time T, for ¢ = 1 : n, and let Veasn(T") be the
value of the cash position in the portfolio at time 7T". Then,

V(0) = Y Vi(0) + Veasn(0); V(T) = D VilT) + Veasn(T). (9.9)
i=1 i=1
Note that the weight w; of asset ¢ in the portfolio at time 0 and the weight weasn
of the cash position in the portfolio at time 0 are given by

‘/1(0) . ‘/cash(o)
P = =1:mn; cash = =, 9.10
w V(0)’ Vi n;  Weash 70) (9.10)
The return R of the portfolio between time 0 and time 7" and the returns R;,
i =1:n, of asset ¢ between time 0 and time 7" are given by

v(T) - V(0) Vi(T) - Vi(0)

R = =75 Vi(0)

i Ry = , Vi=1l:n (9.11)

The return of the cash position is equal to the risk-free return ry, i.e.,

Véash (T) - ‘/cash,(O)

T = Veoon(0) . (9.12)
From (9.11) and (9.9), we find that

_ V(D) - Vv(0)

T v
- T/%o") (;wm—;\fi(m) + ﬁ(vmh(cr) = Veasn 0)
= ﬁ Do (AT) = Vi) + ﬁ(vmm  Veaun(0))
V(D) - Vi(0) | Veasn(T) — Veasn(0)
- Xy ZO)
_ 2": Vi(T) = Vi(0) Vi(0) | Veasn(T) — Veasn(0) Veasn(0)
& V() Vi(0) v (0) Veasn(0)
_ iVi(O) Vi(T) — Vi(0)  Veasn(0) Veasn(T) — Veasn(0)
- = V() Vi(0) V(0) Veasn(0)

n
= szRz + WeashTf,

i=1

where formulas (9.10), (9.11), and (9.12) were used for the last equality. Thus,

n
R = ZwiRi + WeashTs,

d=1

and formula (9.2) is established.
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9.2 Blueprints for finding efficient portfolios
Minimum variance portfolio

The asset allocation for a portfolio invested in n assets and cash, with given expected
return fp and smallest variance of its return can be found below:

e asset weights vector:
HpP —Tf -1
Wmin = oo 2R B (9.13)
ﬂtZRlﬂ ’ -
o weight of the cash position:

1ty-1g
Wrmincash = 1= 1Wmin = 1— (up — rf)?zﬁ—é. (9.14)

The standard deviation of the return of the minimum variance portfolio is omin =
~EEZTL_ and can be computed numerically as

NS

Omin = U.f,”TLERU«’mzn

The asset allocation for the minimum variance portfolio can be computed using
the pseudocode from Table 9.1.

Table 9.1: Pseudocode for asset allocation of minimum variance portfolio

Input:

Y r = n X n covariance matrix of the returns of n assets

¢ = n x 1 vector of expected values of the returns of n agsets
r¢ = risk—free rate

wp = required expected return of the portfolio

Output:

Wmin = asset weights vector for the minimum variance portfolio

Wmin,cash = Weight of cash position for the minimum variance portfolio
Omin = standard deviation of the return of the minimum variance portfolio

B=p—rsl
x = linear_solve_cholesky(3 g, Tt) // compute z = S5
Wmin = —Ptli

Wmin,cash = 1- 1 Wmin

Tmin = / manmezn
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Minimum variance portfolio using tangency portfolio: If

1 -1
Wr = —————Xpn [
TT g R H
is the weight of the n assets in the tangency portfolio, then the asset weights vector
Wmin and the weight Wmin,casn of the cash position given by (9.13) and (9.14) can
also be computed as follows:

Wmin,cash = 1-— E_I:)T_—Ti, (915)
ftwr
Wmin — (1 - wmin,cash)wT- (916)

The standard deviation of the return of the minimum variance portfolio is

Omin = \/'wﬁnanmezn

The asset allocation for the minimum variance portfolio computed using the tan-
gency portfolio can be found using the pseudocode from Table 9.2.

Table 9.2: Asset allocation of minimum variance portfolio from tangency portfolio

Input:

Y r = n X n covariance matrix of the returns of n assets

1= n x 1 vector of expected values of the returns of n assets
ry = risk—free rate

up = required expected return of the portfolio

Output:

Wmin = asset weights vector for the minimum variance portfolio

Wimin,cash = weight of cash position for the minimum variance portfolio
omin = standard deviation of the return of the minimum variance portfolio

f=p—rysl
z = linear_solve_cholesky (X r ,Jz) // compute z = X'
wr = ﬁx

pp—r
Wmin,cash = 1 _t_L

Brwr
Wmin — (1 - wmin,cash)wT
— [
Omin = wminZmein

Note that the asset allocation formulas (9.13-9.14) and (9.15-9.16) will be derived
in section 9.3. :
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Maximum return portfolio

The asset allocatlon for a portfolio invested in n assets and cash, given a variance of
the return ¢% # 0 and largest expected return can be found below:

e asset weights vector:

o _
Wmaz = —P‘l—ERlﬁ, (917)
B'ER T
e weight of the cash position:
1'S5'm
Wmaz,cash = 1 1twma:c = 1l-op (918)

VE YR ,U.

The expected return of the maximum return portfolio with variance of return
{
equal t0 0% IS fimas = T 7+ Up\/ﬁtz;zlﬁ, and can be computed numerically as

Hmae = Tf +ﬁtwmax-

The asset allocation for the maximum return portfolio can be computed using the
pseudocode from Table 9.3.

Table 9.3: Pseudocode for asset allocation of maximum return portfolio

Input:

2R = m X m covariance matrix of the returns of n assets

1 = mn x 1 vector of expected values of the returns of n assets
Ty = risk—{ree rate

op = required standard deviation of the return of the portfolio

Output:

Wmaz = asset weights vector for the maximum return pertfolio
Wmagz,cash = weight of cash position for the maximum return portfolio
Hmaa = expected return of the maximum return portfolio

R=p—rsl
x = linear_solve_cholesky (X r,Tz) // compute x = Z3'7

o
Wmaz = ":Pt_x
Vit .
Wmaz,cash = 1-1 Wmazx
—t
Hmaz = Tf§ + [ Wnaz
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Maximum return portfolio using tangency portfolio: If

1 -1
wr = ———X5'
T 1 tE;zlﬁ R M
is the weight of the n assets in the tangency portfolio, then the asset weights vector
Wimaz and the weight Wimaes cash Of the cash position given by (9.17) and (9.18) can
also be computed as follows:

Wmaz,cash = 1— —Zo_-‘}i“_ . Slgn(ltzglﬁ), (919)
\/szRwT
Wmaz = (1 - wmam,cash)wT; (920)

n (9.19), sign(1'S3'7) = 1, if 1S3 > 0, and sign(1'S3'm) = -1, if 1'S3'w < 0.
The expected return of the maximum return portfolio is

MHmaxz = TF +Etwmaa:~

The asset allocation for the maximum return portfolio computed using the tan-
gency portfolio can be found using the pseudocode from Table 9.4.

Table 9.4: Asset allocation of maximum return portfolio from tangency portfolio

Input:

Y r = n X n covariance matrix of the returns of n assets

= n X 1 vector of expected values of the returns of n assets
r; = risk—free rate

op = required-standard deviation of the return of the portfolio

Output:

Wmay = asset weights vector for the maximum return portfolio
Wmaz,cash = weight of cash position for the maximum return portfolio
Umaz = expected return of the maximum return portfolio

B=p—rsl
z = linear.solve_cholesky (X g i) // compute z = £3'1
wT—-ﬁ—m

if1 ERlp >0
Wmaz,cash = 1-— —tgL
VwhDpwr
else
Wmaz,cash = 14 '——‘"P"’—
Vw L Epwr
end

Wmaz ~— (1 - 'wma:zc,cash)wT
—t
Umaz =T§f + I Wmaz

- Note that the asset allocation formulas (9.17-9.18) and (9.19-9.20) will be derived
in section 9.4.
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9.3 Minimum variance portfolios

The minimum variance portfolio invested in n assets and with a cash position is the
portfolio which has the smallest variance of its return of all the portfolios with a
given expected return yp.

In other words, given up, we are looking for a weights vector w = (w;)i=1:n such
that ur = up and 0% is minimal. From (9.6) and (9.8), it follows that we want to
minimize 0% = w'T pw subject to pr =r; + Tw = up, ..,

min  w'Sgw. - (9.21)

rit+Etw=pp

We use Lagrange multipliers to solve this problem; see section 10.2.2 for details.
The associated Lagrangian function F': R™"! — R is given by

F(w,)) = w'Spw + Mpp —rf —B'w),

where A € R is the Lagrange multiplier.® ’
Since the covariance matrix 3 g is symmetric, we obtain from (10.47) that

D (w'Erw) = 2(Zrw)’. . , (9.22)
Also, from (10.43), it follows that
D(@E'w) =7’ (9.23)
Then,
D F(w, )

fl

D (w'Srw) + AD(pp — rf — f'w)

= D (w'Sgrw) — AD(z'w)

2(Zgpw)’ — AE

= (2Zpw—Xp)'. (9.24)

Also, note that
oF
DyF(w,)) = EX(“”’\) = up—ry— G w. (9.25)

From (10.67), (9.24), and (9.25), we conclude that the gradient of the Lagrangian
function is :

B (DwF(w, )\ 20N pw — AT \°
Dewpy Fw,A) = ( (D)\F((::UU,)\))))t ) - (MP‘—RZ)‘—?#W ) '

To find the critical point of the Lagrangian, we solve Dy 3y F(wo, Ao) = 0, which is
equivalent to solving '

2Xrwo = Aol (9.26)
Two = pp—ry. (9.27)

5Lagrange multipliers can be used to solve this constrained optimization problem since the
condition (10.66), i.e., rank(Dg(w)) = 1, is satisfied for the constraint function g(w) = pp —r5 —
7w, From (10.43), we find that
Dg(w) = D(up —rs - F'w) = - D(@'w) = —7",
and therefore rank(Dg(w)) = 1.
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Recall that T is a nonsingular matrix, since we assumes that the return of none
of the assets can be replicated by using the other n—1 assets and cash; see section 9.1.
Then, from (9.26), we find that

wy = %nglﬁ. (9.28)
By substituting formula (9.28) for wo in (9.27), we obtain that

A0 —termti
SHER'E = wp =1y,

and therefore 0
xo = Appo1i) (9.29)

. YR
From (9.28) and (9.29), we find that
Up —Tf —1_
g g )
'R »
Let Fp : R™ — R given by Fo(w) = F(w, Xo), where Ao is given by (9.29), i.e.,

wp =

(9.30)

Fo(w) = w'Srw+do(pup —rf — 3'w)
2pp —74)

i
W ENRW +
T s

(wp =75 —F'w).

Note that D? (w'Srw) = 2Z g, since L g is a symmetric matrix, and D*(5'w) = 0;
cf. (10.48) and (10.45), respectively. Also, D*(up — 75) = 0, since up —ry is a
constant. Thus, the Hessian of Fo(w) is

2 - —
D*Fow) = Dw'Saw) + LT D2y )
BER T
= 2%g.
Since Eg is a symmetric positive definite matrix, it follows that D?Fo(wo) is

symmetric positive definite. From Theorem 10.7, we find that wo given by (9.30) is
a constrained minimum point, and therefore wm:n = wo, ie.,

BP —Tf -1
Wmin = —oT— 2 9.31
min Etz_ﬁlﬁ R M ( )
is the solution to the minimum variance portfolio problem (9.21).
Moreover, recall from (9.7) that the cash position Wmin,casn in a portfolio with
asset weights vector Wymin is

Wmin,cash — 1-— 1twmin- (932)

We conclude from (9.31) and (9.32) that the minimum variance portfolio with
expected return up is obtained for the following asset allocation:

o asset weights vector Wmin bgiven by

Wmin = o7 2R B (9.33)
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o weight Wmin,caskh Of the cash position given by

1's5'm

TERE

Wmin,cash = 1-— 1twmin = 1- (/.LP — Tf) (934)

The minimum standard deviation of the return of a portfolio with given expected
return pp is

Omin = A/ wfm-nEmem = pe T4 (Zﬁlﬁ)tzft(z};lﬁ)

Ty
_ mwp —7yf — E—l 75> E——l - — wp —Tf —tE—l—
e E(ER)HERSR R p‘tzyn\/“ R E
WP —Tf

- al i (9.35)
VESE'E
here, we used the facts that (£3')" = £37, since Tp is a symmetric matrix; see

Lemma 1.9. Note that EtE_Rlﬁ > 0 since ¥ is a symmetric positive definite matrix,
and therefore 21}1 is also symmetric positive definite; cf. Lemma 5.4.

The pseudocode for the asset allocation for the minimum variance portfolio com-
puted using the formulas (9.33-9.35) can be found in Table 9.1.

Ezample: Find the $100 million minimum variance portfolio with expected return
equal to 2.25% and invested in cash and four assets with expected returns equal to
2%, 1.75%, 2.5%, and 1.5%, and with the following covariance matrix of their returns:

0.09 0.01 0.03 —0.015

0.01  0.0625 -0.02 —-0.01

0.03 -0.02 0.1225 0.02
—-0.015 —-0.01 0.02 0.0576

Assume that the risk free rate is 1%.

Answer: Let y; = 0.02, po = 0.0175, ps = 0.025, ug = 0.015, and ry = 0.01. We look
for the asset and cash allocation corresponding to the minimum variance portfolio
with expected return up = 0.0225.

Note that T = pu — 751 and X are given by

0.01 0.09 0.01 0.03 —0.015
—_ [ 00075 } o 0.01 0.0625 —0.02 —0.01
E=1 0.015 v SRE 003 —0.02 0.1225 0.02

0.005 —0.015 —0.01 0.02 0.0576

The vector Zglﬁ is computed by using the Cholesky decomposition to solve the
linear system corresponding to the matrix X and to the right hand side 7, i.e., Egl'ﬁ
= linear_solve_cholesky(X r,fi); see Table 6.2 and the pseudocode from Table 9.1.
From (9.33) and (9.34), we find that the asset weights vector corresponding to the
minimum variance portfolio is

0.2120
o HBP T -1 0.4888
Wmin = ﬁtEEIﬁER K= 0.3540 ’

0.2808
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and the weight of the cash position is
wmin,cash = 1~ 1t'LUmin = —{.3356.

Thus, the $100 million minimum variance portfolio with expected return equal to
2.25% is obtained by borrowing $33.56 million and investing $21.20 million in asset
1, $48.88 million in asset 2, $35.40 million in asset 3, and $28.08 million in asset 4.

From (9.35), we find that the standard deviation of the return of the minimum
variance portfolio is omin = 0.1949, i.e., 19.49%, which is smaller than the standard
deviation of the returns of each of the four assets, which are v/0.09 = 0.3 = 30%,
4/0.0625 = 0.25 = 25%, +/0.1225 = 0.35 = 35%, v/0.0576 = 0.24 = 24%, respectively.
0 .

9.3.1  Minimum variance portfolios and the tangency portfolio

It is important to note the connection between the minimum variance portfolio and a
special portfolio called the tangency portfolio: in a nutshell, any minimum variance
portfolio consists of a cash position that is determined to match the required expected
return of the portfolio, with the rest of the portfolio invested in the tangency portfolio.

To see this, and implicitly introduce the tangency portfolio, note that the asset
weights vector wmin given by (9.33) is a scalar multiple of the vector £3'%, i.e.,

—_1— tp—7
Winin = ¢ £5 T, where ¢ = £222L . Denote by
RER R

1 1
wr = E—WER H (936)
the asset weights vector in a portfolio with no cash, i.e., with 1*wr = 1, and with
the n assets allocated in the same proportions as the Eglﬁ vector.

This portfolio is called the tangency portfolio. Note that another way of identifying
the tangency portfolio is as the portfolio with the highest Sharpe ratio of all portfolios
fully invested in n assets. The tangency portfolio also plays an important role in the
Capital Asset Pricing Model (CAPM), where it is called the market portfolio.

From (9.36), we find that

ﬁth = E———————LZ_Rlﬁ
1y’
and therefore 1
IROIFy)) 1

=i T D . (9.37)
' ,U/tERl I ,U/LwT
From (9.34) and (9.37), we obtain that-the weight Wmin,casn of the cash position
in the minimum variance portfolio can be written in terms of wr as follows:

pp —Tf
Wmin,cash ~— 1-— —ﬁ_{{UT— (938)
Moreover, from (9.33) and (9.36), we find that
' up —Tf —1—
Wmin = —_— e 3

T
1'S5'm 1 .
= (up—rp) =Bt SR'E

FERE I'SR'E
- (1 - wmin,cash) wr, (939)
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since, from (9.34), it follows that

1'2ln
(/J’P - Tf)ﬁtzglﬁ = 1- Wmin,cash-
From (9.38) and (9.39), we conclude that the minimum variance portfolio with
expected return pp is obtained for the following asset allocation:

o weight Wmin,cash Of the cash position given by

Wmin,cash — 1~ w, ” (940)
ftwr

e asset weights vector wmin given by
Wmin — (1 — w‘min,cash) wr. (941)

The pseudocode for the asset allocation for the minimum variance portfolio com-
puted using the formulas (9.40) and (9.41) can be found in Table 9.2.

We revisit below the example from section 9.3 and find the minimum variance
portfolio by using the tangency portfolio.

Ezample: Find the $100 million minimum variance portfolio with expected return
equal to 2.25% and invested in cash and four assets with expected returns equal to
2%, 1.75%, 2.5%, and 1.5%, and with the following covariance matrix of their returns:

0.09 0.01 0.03 —0.015

0.01  0.0625 —-0.02 —-0.01

0.03 -0.02  0.1225  0.02
—-0.015 -0.01 0.02 0.0576

Assume that the risk free rate is 1%.

Answer: Let uy = 0.02, pg = 0.0175, pz = 0.025, ug = 0.015, and ry = 0.01. We look
for the assets and cash allocation corresponding to the minimum variance portfolio
with expected return pp = 0.0225.

Note that 7 = u — 751 and X are given by

0.01 009 001 003 -0.015
__ | ooors ) 0.01  0.0625 -—0.02 —0.01
E=1 9015 |° =R7 0.03 —0.02 01225 0.02

0.005 -0.015 ~0.01 0.02 0.0576

The vector Eglﬁ = linear_solve.cholesky(X r,[t) is computed by using the Cholesky
decomposition to solve the linear system corresponding to the matrix Xz and to the
right hand side 7. From (9.36), we find that the asset weights vector of the tangency
portfolio is '

0.1587

wp = Ly _ | 03660
= TR P =L 02850

r 0.2103

From (9.40), we find that the weight of the cash position in the minimum variance
portfolio is.

L = —0.3356,
frwr

Wmin,cash —
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and, from (9.41), we find that the asset weights vector corresponding to the minimum
variance portfolio is

0.2120
~ 0.4888
Wnin = (1 — ’U)min,cash) wr = 0.3540

0.2808

Thus, the $100 million minimum variance portfolio with expected return equal to
2.25% is obtained by borrowing $33.56 million and investing $21.20 million in asset
1, $48.88 million in asset 2, $35.40 million in asset 3, and $28.08 million in asset 4.

From (9.35), we find that the standard deviation of the return of the minimum
variance portfolio is omin = 0.1949, i.e., 19.49%, which is smaller than the standard
deviation of the returns of each of the four assets, which are +/0.09 = 0.3 = 30%,
1/0.0625 = 0.25 = 25%, +/0.1225 = 0.35 = 35%, +/0.0576 = 0.24 = 24%, respectively.
O

‘We conclude this section by deriving the formulas for the weights of the tangency
portfolio made of two assets by using formula (9.36) for n = 2 assets.

For n = 2, the covariance matrix X g of the returns of two assets and the vector
T of the excess returns of the assets over the risk—free rate are

2 —
Sr= ( o1 owo2pLe ) and 7= ( gty ), (9.42)

010201,2 a3 M2 —T§f

respectively; see (7.12) and (9.4). From (10.7), we find that

" 1 o3 —o10
2R = 2 Lzp12 ) 9.43
R oto3(1 - piys) ( —010201,2 ot (5.43)
From (9.42) and (9.43), we obtain that
o 1 o5(m —rs) —or02p1,2(u2 —75) .
R 0202(1—p2,) \ o%(p2—rs) — or102p12(ps —7¢) )’
1ts-lg — o3 (p2 — 15) — pr2oioa(p + pg — 2r5) + 3 (u — 1)
R MK = )

oo (1—pis)

and, from (9.36), we conclude that

11—
wp = (W) = ZRF
w2, 123w

o2 (p1-7rs)—o102p1 2(na—7y)

o3 (pa—rs)—p1,20102(p1+p2—2rf)+o3(p1—1y)

o (ua—rs)—o102p1,2(B1—7f)
o3 (pe—rs)—p1,20102(p1+pe—2rf ) +o2(p1—7y)
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9.4 Maximum return portfolios

The maximum return portfolio invested in n assets and with a cash position is the
portfolio which has the largest expected return of all the portfolios with given variance
% of the portfolio return.

In other words, given o% # 0, we are looking for a weights vector w = (Ws)i=1:n
such that 0% = 0% and pr is maximal. From (9.6) and (9.8), it follows that we want
to maximize pr = r; 4+ I'w subject to 0% = w'Spw = 0%, ie.,

max  (ry +@E'w). < (9.49)

wtEpw=c}

We use Lagrange multipliers to solve this problem; see section 10.2.2 for details.
The associated Lagrangian function F' : R™*! — R is given by

Fw,\) = 75 +T'w + Mw'Spw — op),

where A € R is the Lagrange multiplier.® Recall that D(fi'w) = " and D (w'Srw) =
2(Trw)"; see (9.23) and (9.22). Then,
Dy F(w,\) = D(r; +Fw)+ADw'Srw — o5)
= D(p'w)+AD (w'Srw) -
= T+ 2\ (Zrw)

= (G+2)Zgw)’; (9.45)
DaF(w,)) = %?(w,)\) — W' Saw — ob. (9.46)

From (10.67), (9.45), and (9.46), we conclude that the gradient of the Lagrangian
function is

_( (DuF(, ) E+22Zaw '
D(w,A) F('LU,)\) = ( (D,\F(’ZJ],)\))t ) = ( UIL)I;ERw _R[;L-U2P )

To find the critical point of the Lagrangian, we solve D, x)F(wo, Ao) = 0, which is
equivalent to solving

202 pwe = —II; (9.47)

b = whiTrwo. (9.48)

Recall that ¥ r is a nonsingular matrix, since we assumes that the return of none
of the assets can be replicated by using the other n—1 assets and cash; see section 9.1.
Then, from (9.47), we find that .

1 1
Wo = — ——p O 9.49
2)\0 R M ( )
6Laugrzmge multipliers can be used to solve this constrained optimization problem, since the
condition (10.66), i.e., rank(Dg(w)) = 1, is satisfied for the constraint function g(w) = w*Spw —
o%. From (9.22), we find that

Dg(w) = D(w'Sprw —o%) = 2(Sgpw)t.

Thus, rank(Dg(w)) = 1 for any vector satisfying the constraint w*Spw = o?;, unless Zpw = 0.
This would imply that a?_—, = 0, which would contradict the assumption that op # 0.
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Note that
s =D = =R (9.50)

since Y.g is a symmetric matrix; see Lemma 1.9. Then, from (9.49) and (9.50), it
follows that

t 1 —1—t 1 —t — 1yt 1 —tg—1
- = — /7 = - —TT5. 9.51
Wo 220 (Zr'0) 2/\0ﬂ (Zkr 2/\0,“ R ( )
By substituting the forrnulas'(9.49) for wo and (9.51) for w§ in (9.48), we obtain
| that '
| b = HETRRERE = BT (CeSE)E
AN R r 4t R
1 i1

= mutleu. (9.52)

Note that B'E3'E > 0 since Yr is a symmetric positive definite matrix, and
therefore E;l is also symmetric positive definite; cf. Lemma 5.4.
From (9.52), we find that

2 1

>‘0 = ﬁtz_lﬁv
g 402, £
‘ which has two solutions, i.e.,
1 —ty—1—
Ao = —E W ER 3 (9-53)
1 a1
Aoz = Yop [T (9.54)

From (9.49), we find that the corresponding values of wg are

=8 woy = —— YR (9.55)
BER'E
ap —1—

(9.56)

Thus, the Lagrangian associated to this problem has two critical points, (wo,1, Ao,1)
and (wo,z, Ao)z).

To classify the critical point (wo,1,Mo,1), let Fo1 : R™ — R given by Fp1(w) =
F(w,Xo,1), where Ao,1 is given by (9.53), i.e,,

For(w) = rf+Fw+ g (w'Srw—o5)

i

1 1
e+ Ew— G- LR (W Rrw — o).

Note that D*(w'Srw) = 2% g, since T is a symmetric matrix, and D?*(ffw) = 0;
cf. (10.48) and (10.45), respectively. Also, D*(r;) = D*(¢%) = 0. Then, the Hessian
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of Fo,1(w) is

DgFo,l(w)

i

_ 1 -
D*(p'w) — %‘P;Vﬁt,zélﬂ D*(w'L rw)

1 o
= —— % 23
20,P 124 R M R
| S A
op W ap b 2R
Since Xy is a symmetric positive definite matrix, it follows that —~X g is a negative
definite matrix, see Definition 5.8, and therefore D Fp 1 (wo) is also negative definite.

From Theorem 10.7, we conclude that wo,1 is a constrained maximum point.

To classify the critical point (wo,2, Ao,2), let Fo2 : R* — R given by Fyo(w) =
F(w, Ao,2), where Aoz is given by (9.54), i.e.,

Foyz(’w)

It

T+ W+ do2(w S rw — 0B)

It

1
rs + Tw + % TSR (WS rw — oF).
The Hessian of Fpa(w) is
_ 1 1
D’Foa(w) = D*@w) + — E'E R D*(w'S pw)
20p
I e
= — % Yr.
op W 2ip W 24R

Since Xg is a symmetric positive definite matrix, it follows that D?Fp o (wo) is
positive definite. Then, wo,2 is a constrained minimum point for the function f(w);
see Theorem 10.7.

Thus, we conclude that the maximum return portfolio problem (9.44) has one
solution, Wmaes = wo,1 given by (9.55), i.e.,

ap

Wmaz — —F——
VETR'E

Moreover, recall from (9.7) that the cash position Wmag,cash il @ portfolio with
asset weights vector wmey is

LR (9.57)

Wmaz,cash — 1-— 1twma:c~ (958)

We conclude from (9.57) and (9.58) that the maximum expected return of a port-
folio with variance of return equal to o' is obtained for the following asset allocation:

o asset weights vector wmae given by

Wmaz — —““_E;ilﬁ, (959)

o weight Wmax,casn Of the cash position given by

1'T2lm
—Zr B (9.60)

t
Wmazx,cash = 1 -1 Wner = 1_UP
e —T1—
EERE
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The maximum expected return of a portfolio with variance of return equal to o% is
‘ 1
_ %
MHmaexz — TFf + ,U/twmaa: = ry+ UP'/—L_—R—/;L_
BERE

= 715 +opy/ETNRE. (9.61)

The pseudocode for the asset allocation for the maximum return portfolio com-
puted using the formulas (9.59-9.61) can be found in Table 9.3.

Ezample: Find the $100 million maximum return portfolio with 27% standard devi-
ation of return invested in cash and four assets with expected returns equal to 2%,
1.75%, 2.5%, and 1.5%, and with the following covariance matrix of their returns:

0.09 0.01 0.03 -0.015

0.01 0.0626 -0.02 —0.01

0.03 -0.02 0.1225 0.02
-0.015 -0.01 0.02 0.0576

Assume that the risk free rate is 1%.

Answer: We know that p1 = 0.02, py2 = 0.0175, us = 0.025, pg4 = 0.015, and
ry = 0.01. We look for the asset and cash allocation corresponding to the maximum
return portfolio with standard deviation of return equal to op = 0.27.

Note that Z = p — 771 and X are given by

0.01 009 001 003 —0015
N 0.0075 | | 001 00625 -002 —0.01
B=p-rl=1| go15 |3 ZR=| 003 —0.02 01225 002

.~ 0.005 —0.015 —0.01 002 0.0576

The vector E}}lﬁ is computed by using the Cholesky decomposition to solve the
linear system corresponding to the matrix X r and to the right hand side 1, i.e., Eglﬁ
= linear_solve_cholesky(> r ,J); see Table 6.2 and also the pseudocode from Table 9.3.
From (9.59) and (9.60), we find that the asset weights vector corresponding to the
maximum return portfolio is

0.2938
_ B 0.6773
Wmaz = —=—=—==2p I = | 04905 |°
FXpk 0.3891
and the weight of the cash position is
Wmaz,cash — 1- ltwmaz = -~ {.8507.

Thus, the $100 million maximum return portfolio with 27% standard deviation of
return is obtained by borrowing $85.07 million and investing $29.38 million in asset
1, $67.73 million in asset 2, $49.05 million in asset 3, and $38.91 million in asset 4.

From (9.61), we find that the maximum expected return of this portfolio is pimee =
0.0273, i.e., 2.73%, which is more than 2.5%, the largest expected return of any of
the four assets. [
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.9.4.1 Maximum return portfolios and the tangency portfolio

As was the case for the minimum variance portfolio, see section 9.3.1, any maximum
return portfolio consists of a cash position that is determined to match the required
variance of the portfolio return, with the rest of the portfolio invested in the tangency
portfolio.

Recall from (9.36) that the asset weights vector in the tangency portfolio can be

written as .

where I tzl*‘l-—— is a constant and X ' is a vector. Then,
R

N
REAIE
1 e — 1y
- (1t2—1ﬁ)2“t(le)t(Eﬂle)u
R

Il

wrERwr (ER B)'Sr(ZR'E)

|
= —————=FX 9.63
(1t21;1_ﬂ)2ﬂ R M . ( )

where for (9.63) we used the facts that (33') = ©3' since ©3' is a symmetric

matrix, see Lemma 5.4, and that 23251 =1
By taking the square root on both sides of (9.63),” we find that

1 . 1
Vwrlrwr = m\/ﬁ‘zalﬂ'&gn(ltzalﬂ%
R

123 _ 1
\/ﬁtz];{lﬁ \/'LU%ER?UT

Then, from (9.60) and (9.64), it follows that

and therefore

-sign(1'SR'E). (9.64)

g . —1e
Wmazx,cash — 1-— "““t‘i““" . Slgll(ltERllu,).
«/wTERwT

Moreover, from {(9.59) and (9.62), we find that

(9.65)

T
Wmazx —— “‘_—“——'—'ER H

12
= ———e W

- YT
= (1 — Wmaz cash) wr, (966)

"Note that tER E > 0 since L is a symmetric positive definite matrix, and therefore X7 !
is also symmetric positive definite; cf. Lemma 5.4.




270 CHAPTER 9. EFFICIENT PORTFOLIOS. VALUE AT RISK.

since, from (9.60), it follows that

1'Sq'm
UP—RI; =1- Wmaz,cash.
SRR

From (9.65) and (9.66), we conclude that the maximum expected return of a
portfolio with variance of return equal to o% is obtained for the following asset
allocation:

o weight Wmax,cash Of the cash position given by

Wmazcash = 1 — —medeeee - sign(1'55 70); (9.67)
} A/ w%ERwT
e asset weights vector Wiae given by
Wmax = (1 - wma:c,ca.sh) wr- (968)

The pseudocode for the asset allocation for the maximum return portfolio com-
puted using the formulas (9.65) and (9.66) can be found in Table 9.4.

We revisit below the example from section 9.4 and find the maximum return
portfolio by using the tangency portfolio.

Ezample: Find the $100 million maximum return portfolio with 27% standard devi-
ation of return invested in cash and four assets with expected returns equal to 2%,
1.75%, 2.5%, and 1.5%, and with the following covariance matrix of their returns:

0.09 0.01 0.03 —0.015

0.01 00625 -0.02 -0.01

0.03 -0.02 0.1225  0.02
—-0.015 —-0.01 0.02 0.0576

Assume that the risk free rate is 1%.

Answer: Let p; = 0.02, p2 = 0.0175, pz = 0.025, pa = 0.015, and vy = 0.01. We
look for the asset and cash allocation corresponding to the maximum return portfolio
with standard deviation of return equal to op = 0.27.

Note that 7 = p — r¢1 and X g are given by

0.01 0.09 001  0.03 -0.015
G e | 00075 ) o[ 001 00625 —0.02 —0.01
p=r=Tit=1 9015 | =BT 0.03 —0.02 0.1225 0.02 .

0.005 —0.015 —0.01 0.02 0.0576

The vector ¥ ;' = linear_solve_cholesky (X g ,J) is computed by using the Cholesky
decomposition to solve the linear system corresponding to the matrix g and to the
right hand side f.

From (9.62), we find that the asset weights vector of the tangency portfolio is

0.1587
wr — L -1 [ 0.3660
T = 1sLg R Bo= 0.2650

0.2103
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From (9.67), we find that the weight of the cash position in the maximum return
portfolio is

op

Wmazx,cash = 11— T
\/’LUTERU)T

and, from (9.68), we find that the asset weights vector corresponding to the maximum
return portfolio is

sign(1'83'E) = —0.8507,
R M

0.2938

~ 0.6773
Wmas = (1= Wmaz,cash) W = | 44905

0.3891

Thus, the $100 million maximum return portfolio with 27% standard deviation of
return is obtained by borrowing $85.07 million and investing $29.38 million in asset
1, $67.73 million in asset 2, $49.05 million in asset 3, and $38.91 million in asset 4.

From (9.61), we find that the maximum expected return of this portfolio is pimaz =
0.0273, i.e., 2.73%, which is more than 2.5%, the largest expected return of any of
the four assets. [

9.5 Minimum variance portfolio with no cash position

In this section, we find the asset allocation for a minimum variance portfolio fully
invested in n assets. Note that this is different from the minimum variance portfolio
found in Section 9.3, since we now require that no cash position is being held.

Consider a portfolio fully invested in n assets. Since there is no cash position in
the portfolio, it follows that D7, w; = 1, which can be written in vector form as
1w = 1, where 1 is the n X 1 column vector whose entries are all equal to 1.

We look for a weights vector w = (w;)i=1.» such that the variance c% = w'Sgw
of the return of the portfolio is minimal and such that 1*w = 1. Thus, we have to
solve the following constrained minimization problem:

Find w € R™ corresponding to

. t
min w X rw.
1tw=1

We use Lagrange multipliers to solve this problem.
The associated Lagrangian function F' : R™** — R is given by

F(w,\) = w'Zrw+ M1 - 1'w),

where A € R is a Lagrange multiplier.?

&Note that we can use Lagrange multipliers to solve this constrained optimization problem,
since the condition (10.66) is satisfied for the constraint function g(w) = 1 — 1*w:

Dg(w) = D(1—1'w) = — D(1'w) = —1%,

see (10.43), and therefore rank(Dg(w)) = 1.
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Recall from (10.43) and (9.22) that D(1*w) = 1* and D(w'Srw) = 2(Zrw)’.
Then,

DyF(w,\) = D (w'Sgpw)+AD(1—1'w)
= 2(Zpw)’ —A1°
= (2Zgw —A1)". _ (9.69)
Also, note that
oF ¢
DyF(w,\) = gx(w,k) = 1-1w. (9.70)

From (10.67), (9.69), and (9.70) we conclude that the gradient of the Lagrangian
function is

D ) = ((DeEto ) (2

To find the critical point of the Lagrangian, we solve D(u;, »F(wo, Ao) = 0, which
is equivalent to solving

2YXpwo = Aol (9.71)

T'we = 1. (9.72)

Recall that X g is a nonsingular matrix, since we assumes that the return of none

of the assets can be replicated by using the other n—1 assets and cash; see section 9.1.

From (9.71), we find that
Ao

wo = —2—2—311. (9.73)
By substituting formuta {9.73) for we in (9.72), we obtain that
1\221tz,;11 =1,
and therefore 0
A = ————. 9.74
T 1mph (9.74)
From (9.73) and (9.74), we find that
I S

Let Fp: R™ — R given by Fo(w) = F(w, Ao), where Ao is given by (9.74), i.e.,
Fo(w) = w'Spw+ Mo(l—1'w)

i 2 t
= wXpw+ : 1—1"w).
f 1tz;11( )

Note that D? (w'Srw) = 25x and D*(1*w) = 0; cf. (10.48) and (10.45), respec-
tively. Then, the Hessian of Fy(w) is

2

D?Fo(w —
b(w) 15,1

il

D*(w'Srw) -+ D*(1 - 1'w)

= 2%g.
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Since Tp is a symmetric positive definite matrix, it follows that D?Fy(wo) is
symmetric positive definite. From Theorem 10.7, we find that wo glven by (9.75) is
a constrained minimum point.
We conclude that the portfolio with asset allocation wm = wo, i.e., w1th
1 -1

is the minimum variance portfolio. Its variance is

2 1

t —1 t —1
e = MmO RWm = —————=(%p 1) Xr(ZR1
g Wm 2 RW (15);11)2( r 1)2r(ZR'1)
1 tralnt -1 1 txa1
= — 152 YRER ) = —————=1"273"1
(1@:&11)2 (Zr ) (ZrIR) (1t2§11)2 R
1
— : 9.77
1t23M1 (0.77)

here, we used the fact that (£3')" = £3', since L g is a symmetric matrix; see (9.50).

We conclude this section by deriving the asset allocation for the minimum variance
portfolio made of two assets by using formula (9.76) for n = 2 assets.
For n = 2, the covariance matrix X g of the returns of two assets is given by

2
g1 g10201,2
YR = 5 ;
010201,2 g2

see (7.12). From (10.7), it follows that

— 1 o3 —010
S = 2 Lozene 9.78
v TR (- O78)
1
Let 1 = < 1 ) Then,

$=1p — 1 02 — 010201,2
f 0303(1 = p2y) \ of ~ 102012

and therefore we find that

2
o1 — 20102p1,2 + 03

1in7l1 =
r ' ofo3(1 _P%,z)

(9.79)

From (9.76) for n = 2, and using (9.78) and (9.79), we obtain that
_ ([ m _ 1 -1,
Wm = ( wa ) - 1t2§112R !

2
_ 1 02 — 010201,2
- 2 _ 9 P) 2 _
01 — 20102p1,2 + 03 gj — 0102012

2

03—010201,2
P B ys—— ¥
of—20102p1,2+05

01—0102P1,2
o1—20y02p1,2+05
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Thus, the asset allocation for the minimum variance f)ortfolio fully invested in two
assets is
a % — 010201,2

= 2 ; 9.80
w1 0‘% — 20109p1,2 + O‘% ( )

2
01 —010201,2
wy = : = 1—w. 9.81
2 0% —2010201,2 + 034 ' ( )

From (9.77) and (9.79), we obtain that the standard deviation of the return of this

portfolio is
o1024/1-pi,

\/1t21—211 B \/U% —20102p1,2 + ag‘

(9.82)

9.6 Value at Risk (VaR). Portfolio VaR.

The Value at Risk (VaR) of a portfolio provides one number. estimating, at a given
level of confidence, how much of the portfolio value could be lost over a given time
horizon. Thus, VaR depends on two parameters:

e N, the number of days in the time horizon;
e C, the confidence level.

Denote by VaR(N,C) the N day C% VaR of a portfolio. Then, by definition,
VaR(N, C) is the largest value (dollar amount) such that the probability that the
portfolio loss over the next N days is smaller than VaR(N,C) is C. In other words,

if V(0) and V(IN) denote the current value of the portfolio and the value of the
portfolio in N days, respectively, then

VaR(N,C) = sup{z such that P(V(N) — V(0) > —z) = C}. (9.83)

Ezample: If a portfolio has a five-day 98% VaR of $10 million, then there is a 98%
probability that the portfolio will not lose more that $10 million within five days or,
equivalently, the probability of the portfolio suffering losses bigger than $10 million
within five days is 2%. O

If the portfolio value V(N), or, equivalently, the portfolio return HW’ is
assumed to have a continuous probability distribution with strictly increasing prob-

ability density function, then (9.83) simplifies to:
VaR(N, C) is the number given by

P(V(N)-V(0) > —=VaR(N,C)) = C. (9.84)
Note that (9.84) is equivalent to
P(V(N)-V(0) < -VaR(N,C)) = 1-C, (9.85)

which can be interpreted as follows: the probability that the loss of the portfolio over
the next N days is greater than VaR(N,C) is 1 — C.
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A frequent assumption is that the return of a portfolio is normally distributed.
Note that this would indeed be the case if the returns of the portfolio components
have a joint multivariate normal distribution. Then, any linear combination of their
returns, including the weighted average of the portfolio returns that gives the portfolio
return, see (9.2), would be normally distributed; cf. Theorem 7.7.

If a portfolio is assumed to have normally distributed returns, then the formulas
(9.84) and (9.85) for the N day C% VaR of the portfolio hold. If ug, and or,
are the annualized expected return and the standard deviation of the return of the
portfolio over a small time period ¢, then

V() - V(0
—%—(—) = ppyt + oryViZ. (9.86)
For an N day horizon, let t = % in (9.86) and obtain that
V(N)—V(0) N N
_— = —— —Z .
V(0) iy 555 T ORv\ 9532 (9.87)
where V() is a simplified notation for V (), the value of the portfolio in N days.

From (9.85) and (9.87), it follows that®
P(V(N)=-V(0) < —VaR(N,C)) = 1-C

V(N)-V(0) _ VaR(N,C)\ _
= P( OB ) >_1—c (9.88)

N N VaR(N, C)
A g YL )
( Hhy 355 Y ORVA 5532 S T @) ) ¢
[N VaR(N, C) N
a7 AV N ik it Rl A = —_ 1 —
<= P ( ORy 2522 < V(o) KRy 252 > 1-C
_ [252VaR(N,C) [N pr, \ _ o
N og,V(0) 252 o, N
252 VaR(N,C) . [ N pry,
— P|z<-|y2=2220 — = 1-C. (9.89
< - < N ORy V(O) + 252 ORy ( )

Let z¢ be the z-score of the standard normal distribution corresponding to C,
ie., P(Z < z¢) = C. Note that

Z

<« P

IA

zg99 = 2.3263, since P(Z < 2.3263) = 0.99 = 99%
208 = 2.0537, since P(Z < 2.0537) = 0.98 = 98%;
zo5 = 1.6449, since P(Z < 1.6449) = 0.95 = 95%;
zg0 = 1.2816, since P(Z < 1.2816) = 0.90 = 90%.

Recall that P(Z < —a) =1— P(Z
proof of this result. Then,

AN

a) for any a € R; see Lemma 10.19 for a

P(Z<—2c) = 1-C. (9.90)

9The assumption that the portfolio has positive initial value, i.e., V(0) > 0, was made and
used implicitly in (9.88).
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From (9.89) and (9.90), we obtain that

252 VaR(N, C) N pry
= 222 AMLY) L BRy 9.9
e N o v©) | Vaszon, (0.91)

By solving (9.91) for VaR(N, C), we find that

VaR(N,C) = ,/2 S5 0Ry 20V (0) — 2i{_ﬁpﬁvv(o). ‘ (9.92)

For small values of N, e.g., for N < 10 corresponding to time horizons of less

than two weeks, 51;—2 is much smaller'® than 252 . Thus, from (9.92), we obtain the
following approximation:

N .
VaR(N,C) =~ \/%QURVZCV( ). (9.93)

From (9.93), it can be inferred that the Value at Risk of a portfolio with normally
distributed return is proportional to the square root of the time horizon, which
provides the following simple way to scale the Value at Risk of a portfolio to different
time horizons and confidence levels:

VaR(Nz, Cz) .~ RCaV Nz
VaR(N1,C1) 201'\/N1’

which can also be written as

VaR(Na, Ca) ~ ﬁ V]]:,’z VaR(N1,C1). (9.94)
C1

Example: What is the ten-day 99% VaR. of a portfolio with a five~day 98% VaR of ~
$10 million?

Answer: Assuming that the returns of the portfolio are normally distributed, we

obtain from (9.94) that

Zgg\/ 2. 3263\/
VaR 5 days, 98%) =

Ve VRR( days, 98%) = T o

$16,019,307. [

VaR(10 days, 99%) - $10, 000, 000

%

il

Example: Consider two assets with multivariate normal distribution of their returns.
Their returns have standard deviations of 25% and 35%, and a correlation of -25%.

(i) Use formula (9.93) to find approximate values for the 10-day 98% VaR. of a $100
million portfolio if the portfolio is invested in the first asset, invested in the second
asset, or invested in the minimum variance portfolio fully invested in the two assets.

(ii) Assume that the returns of the two assets have expected values of 3% and 6%,
respectively. Use formula (9.92) to find approximate values for the 10-day 98% VaR
of a $100 million portfolio if the portfolio is invested in the first asset, invested in the

WOEor example, for N = 10, Moo= —— ~ 0.20 and & = A% ~ 0.04.
252 252 252
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second asset, or invested in the minimum variance portfolio fully invested in the two
assets.

(iii)) What is the percentage difference between the VaRs obtained by using the for-
mulas (9.93) and (9.92)7

Answer: (i) Let VaR1(10 days, 98%), VaR2(10 days, 98%), VaR. (10 days, 98%) be
the 10-day 98% VaR of the $100 million portfolio fully invested in the first asset,
fully invested in the second asset, and invested in the minimum variance portfolio
fully invested in the two assets, respectively.

Let 01 = 0.25, 02 = 0.35, and p12 = —0.25 be the standard deviations and the
correlation of the returns of the two assets, respectively. From (9.82), we find that
the standard deviation of the return of the minimum variance portfolio fully invested
in the two assets is o, = 0.177139.

From the approximate VaR formula (9.93), we obtain that

10 . .
1/ 2—5201ng - $100mil = $10.228mil;
A/ —-1-—(-)— Zog - $100mil = $14.319mil;

25202 98 mill = . i,

/10 . .
50 Om 7o -$100mil = $7.247mil;
recall that zg9s = 2.0537.

The VaR. of the minimum variance portfolio is significantly smaller that the VaR
of both the portfolio invested in the first asset, and of the portfolio invested in the
second asset, which shows that portfolio diversification can be used to reduce the risk
of the portfolio.

Q

VaR; (10 days, 98%)

Q

VaR2(10 days, 98%)

VaRn, (10 days, 98%)

Q

(ii) Let p1 = 0.03 and p2 = 0.06 be the expected values of the returns of the two
assets, respectively.
Since zgs = 2.0537, we obtain from (9.92) that

VaR1(10 days,98%) = 14/ 51—5%012'98 - $100mil — 515%;/,1 $100mil = $10.109mil;
10 . 10 . .
VaR2(10 days, 98%) = 55502498 ° $100mil — o5 H $100mil = $14.081mil.

The expected value of the return of the minimum variance portfolio fully invested
in the two assets is ptm = w11 + wap1, where w1 and wq are given by (9.80-9.81).
We obtain that g, = 0.04107, and, from (9.92), it follows that

VaR (10 days, 98%) = \/%angs $100mil — %um $100mil = $7.084mil.

(iii) The percentage differences between the VaRs obtained by using the formulas
(9.93) and (9.92) are all smaller than 2.5%, as follows:

for the portfolio fully invested in the first asset:

110.228 — 10.109)

10,528 = 0.0116 = 1.16%.
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for the portfolio fully invested in the second asset:

14319 14081 _ 0o 1 g0

14.319
for the minimum variance portfolio fully invested in the two assets:
[7.247 —7.084] _ o
oA 0.0225 = 2.25%.

In other words, the VaRs obtained using the expected values of the returns of the
two assets and the VaRs obtained using only the standard deviations of the returns
are very similar. Thus, in order to estimate Value at Risk, there is no need to find
the expected values of the returns of assets or portfolios, which is very difficult to do
with any accuracy in practice. This is similar to option pricing in the Black—Scholes
framework, where the drift of the assét (i.e., the expected value of the instantaneous
return of the asset) is not needed in order to compute the Black-Scholes values of’
the options. O .

The usefulness of Value at Risk comes from its simplicity: it is a single number
that makes comparing VaRs at different times easy, and makes deteriorating trends
easy to spot. However, its simplicity is also its main drawback, since VaR does not-
distinguish between possible sizes of the losses beyond the 1 — C percentile.

A coherent risk measure that distinguishes between different sizes of losses under
tail events is expected shortfall, also called conditional Value at Risk (cVaR). The N
days expected shortfall of a portfolio at confidence level C is the expected loss of the
portfolio over the next N days conditional on the loss being greater than VaR(N, C).
Expected shortfall is subadditive, unlike VaR; see section 9.6.1 for details on the
subadditivity of VaR. | '

9.6.1 VaR of combined portfolios and subadditivity

An intuitive requirement for a risk measure is that it would decrease with portfolio
diversification. Formally, this is called the subadditivity requirement for a coherent
risk measure: If rm(V) denotes the risk measure of portfolio V', then this risk measure
is subadditive if and only if rm(V7 + V2) < rm(V1) + rm(V2) for any two portfolios
V1 and V5.

Value at Risk is not a coherent risk measure, as first pointed out by Artzner et
al. [6]; see the example below. This has potentially very detrimental consequences
for using VaR in practice. For example, it may not be true that the overall Value
at Risk of a financial institution is smaller .than the sum of the VaRs for different
groups within the firm. Note that expected shortfall (cVar) is subadditive, and it
has the further advantage of better estimating tail risk exposure.

The example below of an instance when VaR is not subadditive is adapted from
Artzner et al. [6]. ‘

Assume that the changes Vi (N)—V1(0) and Vo(N)~V2(0) in the values of two given
portfolios over an N day time horizon are independent and identically distributed,
with probability density functions given by

005 if —2<z<0;
filz) = faolz) = 090, if 0<a<], (9.95)
0, it 1<z
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Note that

PWi(N) - V1(0) = 0)

oo 1
/ fi(z) dz = / 09dz = 0.9 = 90%;
0 0

] 1
P(Vo(N)—V2(0) >0) = / falz) de = / 0.9dz = 0.9 = 90%.
0 0
Then, from (9.83), it follows that
VaRv; (N,90%) = VaRy,(N,9%0%) = 0, (9.96)

i.e., the N-day 90% VaR of both portfolios is 0.

However, we will show below that the N-day 90% VaR of the combined portfolio
is 0.4966, see (9.101), which is larger than 0, the sum of the N-day 90% VaRs of
each portfolio; see (9.96).

Denote by V(IN) the value after N days of the portfolio obtained by combining
the two portfolios. Then, the change in the value of the combined portfolios is the
sum of the changes in the values of each portfolio, i.e.,

V(N)=V(0) = (Vi(N)+Va(N)) — (Vi(0) + V2(0))
= (V) = Va(0)) + (Va(N) — V2(0)).

Since V1(N) — V1 (0) and Vo(IN) — V2(0) are independent with probability density
functions fi(z) and f2(z) given by (9.95), if follows that the probability density
function f(z) of V(N) — V(0) is the convolution of fi(z) and f2(z), i.e.,

£@) = (he)e) = [ A1) dy
see, e.g., Theorem 4.1 from Stefanica [36].

By using formula (9.95) for f1(y) and noting that fi(y) =0ify < —2 and ify > 1,
we obtain that

f(=)

i

Q0 1
/_ Bl =v) d + / A@) fale ) dy

0 1
0.05 /_ o9 dy + 09 /0 Falz— ) dy. (9.97)

By using the substitutions s = x —y and ¢t = x —y for the first and second integral
from (9.97), respectively, we find that

f(z) 0.05 ) fa(s) (—ds) + 0.9/2_ fa(t) (—dt)

x+-2

0.05 / " sy ds + 09 / © R dt.
x x—1

After further computations using (9.95) for f2, we conclude that

0, if <-4
0.01 + 0.00252, if —-4<z< -2
0.18 4+ 0.0875z, if —-2<z< -1,
flz) = 0.09 — 0.0025z, if —-1<z<0;
0.09+0.722z, if 0<z<1;
1.62—-081z, if 1<z<2;
0, if 2<uz.
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Furthermore, note that

P (”V(N) ~V(0) < ~6(v37-6) ) (9.98)
—6(v/37-6)
/_ f(x) dx

-2
/ (0.01 + 0.0025z) dz + / (0.18 + 0.0875z) dz

—4 —2

i

—6(v/37—-6)
+ / (0.09 — 0.0025z) dz

-1
-2 112 —1
+ 10.18 +0.0875 (—-—)
—4 2 -2

2
(0.02 +0.0025 (%)
—6(+/37-6) :
> (9.99)

fl

+ <0.09(—6(\/§7 - 6) + 1) — 0.0025 (%)

0.005 + 0.04875 + 0.04625
0.1. (9.100)

For completeness, we include the details for the computation of (9.99) here. Let
u = —6(+/37—6). Note that v is a solution to the quadratic equation u?—T2u—36 = 0,

and therefore % = 36u -+ 18. Then, (9.99) can be written as

k3

2
0.09(u + 1) — 0.0025 (%)

2
0.09(u + 1) — 0.0025 <‘_‘2_ - %)

-1
= 0.09(u+ 1) — 0.0025 <36u +18 — %)

0.09u + 0.09 — 0.09u — 0.045 4+ 0.00125
=- 0.04625.

From (9.98) and (9.100), we conclude that
P ( V(N) — V(0) > —(v/37 — 6) ) = 09.
From (9.83), it follows that the N—day 90% VaR of the combined portfolio is
VaRy (N,90%) = 6(v37 —6) ~ 0.4966, (9.101)
which is greater than 0, the sum of the N~day 90% VaR of each portfolio:
| VaRy, (N, 90%) + VaRy, (N;90%) = 0;

cf. (9.96).

In the example above, we used the definition (9.83) for Value at Risk, and not
the approximate formula (9.93) which is accurate only if the change in the value of
the portfolio were normally distributed. Note that, if formula (9.93) for VaR were
to be used, then it can be shown that the VaR of two combined portfolios would be
smaller than the sum of the VaRs of the portfolios, and it would appear that VaR is
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a subadditive measure; see an exercise at the end of this chapter. However, formula
(9.93) only holds if the portfolio return is normally distributed, which is not the case
in practice, and, in particular, is not the case for the portfolios from-the example
above. '

9.7 References

For an overview of the latest advances in asset allocation and portfolio optimization
see Fabozzi and Markowitz [14]. Advanced risk and portfolio management techniques
are analyzed in depth in Meucci [29].

Efficient portfolios invested in only two assets are analyzed in detail in many
books; see. e.g., Ruppert [33].

An expanded treatment of VaR can be found in Hull’s risk management book [23].
An approach further tailored to practical applications can be found in Alexander [2].

Expected shortfall was introduced as a measure of risk in the seminal paper of
Artzner et al. [6]. Further details on expected shortfall (cVar) and other alternatives
to VaR are included in Andersen and Piterbarg [4].


Highlight


282

CHAPTER 9. EFFICIENT PORTFOLIOS. VALUE AT RISK.

9.8 Exercises

1.

Two stocks trade at $100 and $60, respectively. Their three-months returns
have expected values of 8% and 4%, respectively, and standard deviation of
20% and 15%, respectively. The correlation of the returns is 25%.

(i) Consider a portfolio made of 150 shares of the first stock and 500 shares of
the second stock. What are the weights of each stock in this portfolio?

(ii) Assume that you have $500,000 to invest. Find a portfolio made of the two
stocks that has a 9% expected return.

(iii) Identify the two portfolios fully invested in the two assets that have a
14.5% standard deviation of return. What are the expected returns of the two
portfolios?

. Assume that the asset allocation for a $100 million maximum return portfolio

invested in three assets is $30 million in the first asset, $10 million in the second
asset, $40 million in the third asset, and $20 million in cash. What is the asset
allocation of the tangency portfolio made of these three assets?

Consider three assets with the following expected values, standard deviations,
and correlations of their returns:

Hi = 0.08; g1 = 0.25; P12 = — 0.25;
p2 = 0.12; o2 = 0.25; pa3z = —0.25
us = 0.16; o3 = 0.30; p13 = 0.25.

The risk-free interest rate is 4%.

(i) Find the asset allocation corresponding to the tangency portfolio. What are
the expected value and the standard deviation of the return of the tangency
portfolio?

(ii) Find the asset allocation corresponding to the minimum variance portfolio.
What are the expected value and the standard deviation of the return of the
minimum variance portfolio?

Assume that you invest $10 million in two different assets and cash. The
three-months returns of the two assets have expected values of 8% and 12%,
respectively, and standard deviations of 15% and 20%, respectively. The cor-
relation of the returns of the two assets is 25%. The risk—free interest rate is

5%. ’
(i) Find the asset allocation for the tangency portfolio.

(ii) Find the asset allocation for a minimum variance portfolio with 7% expected

_ return, and the standard deviation of the return of this portfolio.

(iii) Find the asset allocation for a minimum variance portfolio with 11% ex-
pected return, and the standard deviation of the return of this portfolio.
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(iv) Find the asset allocation for a maximum return portfolio with 12% standard
deviation of return, and the expected return of this portfolio.

(v) Find the asset allocation for a maximum return portfolio with 18% standard
deviation of return, and the expected return of this portfolio.

(vi) Assume that the risk—ree interest rate changes to 5.25%. How do you
adjust the asset allocation of the minimum variance portfolio with 7% expected
return in order to maintain a minimum variance portfolio with 7% expected
return? .

5. Consider two assets with three-months returns with expected values of 6% and
10%, respectively, and standard deviations of 25% and 35%, respectively. The
correlation of the three-months returns of the two assets is —25%. The risk-free
interest rate is 3%. Assume that you invest $100 million in the two assets.

(i) Find the minimum variance ¢f the return of a portfolio made of the two
assets. What is the expected return of this portfolio?

(ii) What is the 10-day 98% VaR. of a $100 million portfolio, if it is invested
in the first asset, invested in the second asset, or invested in the minimum
variance portfolio, respectively? '

6. Consider three assets with the following expected values, standard deviations,
and correlations of their returns:

o 0.06; o1 0.18; pi2 = —0.50;

a2 0.09; o9 0.20; p23 —0.25;
M3 = 0.12; g3 = 0.24; P1,3 = 015

[l

The risk—free interest rate is 3%.

(i) Find the asset allocation for the tangency portfolio. What are the expected
return and the standard deviation of the return of the tangency portfolio?

(ii) Find the asset allocation for a minimum variance portfolio with 10% ex-
pected return, and the standard deviation of the return of this portfolio.

(iii) Find the asset allocation for a maximum return portfolio with 20% standard

deviation of return, and the expected return of this portfolio.

7. Consider five assets with the following expected values, standard deviations,
and correlations of their returns:

w1 = 0.08 o1 = 0.25

w2 = 0.12; o2 = 0.25;

ps = 0.16; o3 = 0.30;

M4 = 0.18; g4 = 0.32;

us = 021, o5 = 0.35.
pr2 = —025 p13 = —025 pa = 035 ps = —0.10;
p2,3 = 0.30; p24 = —0.50; p25 = 0.10;
psa = —0.30; p3s = —035 pss = 0.65
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The risk—free interest rate is 5%.

(i) Find the asset allocation for a minimum variance portfolio with 17% ex-
pected return, and the standard deviation of the return of this portfolio;

(ii) Find the asset allocation for a maximum return portfolio with 30% standard
deviation of return, and the expected return of this portfolio.

. Consider four assets with the following expected returns over a fixed time pe-

riod:
p1 = 4%; pe = 3.5%; ps = 5%; wa = 3.4%,

and with the following covariance matrix of their returns over the same time
period:
0.09 0.01 0.03 —0.015
0.01  0.0625 —-0.02 —0.01
0.03 —0.02 0.1225 0.02
—0.015 -0.01 0.02 0.0576

Assume that the risk—free interest rate is 1%.

(i) Find the asset allocation for the tangency portfolio. Find the expected value
and the standard deviation of the return of the tangency portfolio. What is
the Sharpe ratio of the tangency portfolio?

(ii) Find the asset allocation for a minimum variance portfolio with 3% expected
return, and the standard deviation of the return of this portfolio. What is the
Sharpe ratio of this portfolio?

(iil) Find the asset allocation for a maximum return portfolio with 27% standard
deviation of return, and the expected return of this portfolio. What is the
Sharpe ratio of this portfolio?

(iv) Find the asset allocation for the minimum variance portfolio fully invested
in the assets (i.e., with no cash position). What is the Sharpe ratio of this
portfolio?

. Consider three assets with the following expected values, standard deviations,

and correlations of their returns:

pur = 005 o1 = 0.15; 2 = —0.25
M2 = 0.09; g2 = 0.20; P23 = 0.25;
ps = 0.10; o3 = 0.25; pi13 = 0.50.

The risk—free interest rate is 2%.

(i) Find the asset allocation for a minimum variance portfolio with 8% expected
return, and the standard deviation of the return of this portfolio.

(ii) Assume that the returns of the three assets have a joint multivariate normal
distribution. Find the probability density function of the return of the minimum
variance portfolio with 8% expected return.
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10.

11.

12.

(iii) Find the probability that the return of the minimum variance portfolio with
8% expected return is between 7% and 9%. Also, find the probability that the
return of this portfolio is below 5%, and the probability that the return of this
portfolio is above 10%.

(iv) Consider a portfolio equally invested in each of the three assets. Note that
the expected return of this portfolio is 8%. Find the probabilities that the
return of this portfolio is between 7% and 9%, is below 5%, and is above 10%,
respectively.

Let 11, o1 and p2, o2 be the expected values and the standard deviations of the
returns of two assets over a fixed time period, respectively, and let pi,2 be the
correlation of the returns of the two assets over the same time period. Recall
that the minimum variance portfolio fully invested in two assets is obtained by
allocating

o2(02 ~ p1,201)
(0 — 20102p1,2 + 03)
of the portfolio value to the first asset and ws = 1 — w; of the portfolio value
to the second asset.

w, =

.Show that the minimum variance portfolio has only long asset positions, i.e.,

0 <wi,wz <1, if and only if
p1,2 < mln(01,02>
o2 01

(1) Show that the asset allocation for a minimum variance portfolio with ex-
pected return pp can also be written as follows in terms of the asset weights
vector wr of the tangency portfolio:

e asset weights vector wmin given by

Wi = B2y, (9.102)
atwr

o weight Wmin,cash Of the cash position given by

Wmin,cash = 1- 1twmin; (9103)

(ii) Write a pseudocode for computing the asset allocation for a minimum vari-
ance portfolio with expected return up using the formulas (9.102) and (9.103).

(1) Show that the asset allocation for a maximum return portfolio with variance
of return equal to 0% can also be written as follows in terms of the asset weights
vector wr of the tangency portfolio:

o asset weights vector wmes given by

ap

Wmaz = ———e—o - sign(1'S3! Bwr;
ma. \/m g( R ,U,) )

(9.104)
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o weight Wmagz cash Of the cash position equal to 1 — 1*wmas, ie.,

Wmaz,cash — 1-— 1twmam~ (9105)

(ii) Write a pseudocode for computing the asset allocation for maximum return
portfolio with variance of return equal to 0% using the formulas (9.104) and
(9.105).

Assume that the 99% two day VaR of a portfolio is $10 million. Estimate the
two day 95% VaR of the portfolio and the five day 95% VaR of the portfolio.

Show that if two portfolios and their combined portfolio have normally dis-
tributed returns, then the VaR of the combined portfolio is smaller than the
sum of the VaRs of each individual portfolio.
In other words, if V1, V2, and V =V} + V; are portfolios with normal returns,
show that

VaRy (N,C) < VaRy, (N,C) + VaRy, (N, C),

where VaRv (N, C), VaRy, (N, C), and VaRy, (N,C) are the N day C% VaRs
of V, Vi, and Va, respectively.

Hint: Recall that, for a portfolio W with normal returns,

N N
VaRw (N,0) = 4/ 5p50my 26 W(0) — 5o pury W(0),

and use the fact that the return Ry of the combined portfolio is the weighted
average of the returns Ry, and Ry, of the two portfolios, i.e.,
Vi), Va(0)

vo) " T 7o)

Ry = Ry,.

Consider three assets with multivariate normal distribution of their returns.
The expected values, standard deviations, and correlations of their returns are

w1 = 0.08; o1 = 0.25; p12 = —0.25
M2 = 0.12; oy = 0.25; pP2,3 = —0.25;
ps = 0.16; o3 = 0.30; p13 = 0.25.

(i) What is the 5-day 95% VaR of $100 million portfolios fully invested in the
first asset, fully invested in the second asset, and fully invested in the third
asset, respectively? ’

(i) What is the minimal 5-day 95% VaR of a $100 million portfolio fully in-
vested in the first and second asset, fully invested in the second and third asset,
and fully invested in the first and third asset, respectively?

(iii) What is the minimal 5-day 95% VaR of a $100 million portfolio fully
invested in all three assets?
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Mathematical appendix and technical results.

Determinants, permutation matrices, orthogonal vectors and orthogonal matrices,
quadratic forms.

Multivariable functions.

Lagrange multipliers.

The “Big O” notation.

European options overview.
Eigenvalues of symmetric matrices.
Row rank equal to column rénk.

Technical results for Cholesky and LU decompositions.

10.1 Numerical linear algebra tools.

In this section, we give a brief overview to determinants, permutation matrices,
orthogonal vectors and orthogonal matrices, and quadratic forms.

10.1.1 Determinants

The concept of the determinant of a square matrix is of little relevance for numerical
linear algebra purposes." However, if needed, the determinant of the matrix can
be computed efficiently using the LU decomposition of the matrix, which requires

%ns +0(n?) operations. Using the classical definition of the determinant to compute

. . . n+1
it would require a huge number of operations, on the order of n-n! ~ 2=

A very important use of the concept of the determinant of a matrix is as an equiv-
alent characterization of a matrix being nonsingular if and only if the determinant
of the matrix is nonzero; see Theorem 1.2.

1The condition number of a matrix is much more relevant, since, it indicates not only whether
a matrix is nonsingular, as does the determinant of the matrix, but also how far from being
nonsingular (i.e., ill-conditioned or well-conditioned) a matrix is; see Demmel [13] for more details.

287
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The determinant of a diagonal matrix D is equal to the product of all the main
diagonal entries of the matrix, i.e.,

det(D) = ﬁ D(i,i). (10.1)
i=1

In particular, the determinant of the identity matrix is 1, i.e.,
det(I) = 1. (10.2)

The determinant of a lower triangular matrix L is equal to the product of all the
main diagonal entries of the matrix, i.e.,

det(L) = ﬁ L3, ). (10.3)

The determinant of an upper triangular matrix U is equal to the product of all’
the main diagonal entries of the matrix, i.e.,

det(U) = [] UG9). (10.4)

Since the transpose of an upper triangular matrix is lower triangular, it follows
from (10.3) and (10.4)

det(U") = ﬁ U(i,3) = det(U). (10.5)

i=1

The determinant of the 2 x 2 matrix A = ( CCL 2 ) is

det(A) = ad — be. (10.6)
Note that the inverse of the 2 x 2 matrix A is
-1 _ 1 d -b . 1 d b
AT = det(A) ( —c a ) ~ ad—be ( —c a ) (10.7)
ay,y a2 ais
The determinant of the 3 x 3 matrix A ={ a21 a22 a23 is

as,1 a32 G33
det(A) = ai1a22a33 + 12023031 + €1,302,103,2
— @1,302,2031 — 01,1042,303,2 — 01,202,103,3. (10.8)
Lemma 10.1. Let A and B be square matrices of the same size. Then,
det(AB) = det(A) det(B). (10.9)
Lemma 10.2. Let A be a square matriz. Then,

det(AY) = det(A).
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‘ 10.1.2 Permutation matrices

Definition 10.1. A permutation matriz is a matriz obtained by permuting the
columns (or, equivalently, the rows) of the identity matriz.

For every permutation matrix P of size n there exists a permutation® 7. of the
numbers 1,2, ...,n such that

P = col (e‘rc(k))kzlln :

Similarly, for every permutation matrix P of size n there exists a permutation
function 7, of the numbers 1 : n such that

P = row (€.er(j))j:1:n'

However, the column and row permutation functions corresponding to the same
permutation matrix need not be the same, as seen in the example below:

Ezample: The matrix

0 0 1 0 0
1 0 0 0 O
P = 0 0 0 0 1
01 06 0 0
0 0 01 0O
is a permutation matrix.
The row form of P is
€5 3
t
€1 1
P = ek = 5 1,
eh 2
el 4
and can be expressed as
t
P = TIow (eTr(j))j:1:57

where 7, : {1,2,3,4,5} — {1,2,3,4,5} is given by
(1) =3 72(2) = 15 7(3) =5 7(d) = 2 7(5) = 4
The column form of P is
P = (es|es|er|es|es) = (24153),

and can be expressed as
P = col (eTc(k))k:l:5 ,
where 7. : {1,2,3,4,5} — {1,2,3,4,5} is given by

(1) =2; 7(2) =4; 7.(8) =1; 7.(4) =5; (5)=3. O

2 A permutation of the numbers 1,2,...,n is a function = : {1,2,...,n} — {1,2,...,n} which
is one~to-one and onto, i.e., a function that assigns to every number ¢ between 1 and n a unique
number 7(7) between 1 and n such that, if 1 <14 # j < n, then 7(2) # 7(4).
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Theorem 10.1. (i) Matriz multiplication by a permutation matriz to the left results
in a corresponding permutation of the rows of the matriz.
In other words, if A = row(r;) is a square matriz of size n and if P =

¢ : ) ,
TOW (eTT(j))jzlm is a permutation matriz, then

j=ln

PA = row(r,,. (10.10
() )

j=ln "’

(4) Matriz multiplication by a permutation matriz to the right results in a corre-
sponding permutation of the columns of the matriz. )

In other words, if A = col(ax),_,.,, 15 @ square matriz of size n and if P =
col(efc(k))k:hn 18 a permutation matriz, then

AP = col{a,. (i (10.11
c(k)

k=1m '

Proof. (i) Recall from (1.27) that e54 = r; for all j =1 :n. Thus,
etfr(j)A = TGy Yi=1l:n,

and therefore, from the matrix—matrix multiplication formula (1.12), we find that

PA = row (eir(j)A)j:Ln = Tow (T‘rr(j))jzl:n '

(ii) Recall from (1.26) that Aer = ax for all k =1 :n. Thus,
Ae‘rc(k) = Qr.(k)>» VJ =1 ‘T,
and therefore, from the matrix—matrix multiplication formula (1.11), we find that

AP = col (AeTC(k))]czltn = col (a""C(k))kzl:n :

Ezample: Let
-2 3 -1 0 15
1 0 —~10 -2 4
A = 5 =2 1 0 1
-5 -1 2 -6 -3
0 -1 -3 11 -9

and let P be the following permutation matrix:

0 01 00

10000

P = 00 0 0 1

01 0 00

0 0 0 10

Then,

el 5 -2 1 0 1
et -2 3 -1 0 15
P4 = et | A = 0 -1 -3 11 -9
eh 1 0 -10 -2 4

el -5 ~1 2 —6 -3
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3 0 -2 15 —1

- 0 -2 1 4 10
AP = (ex|esler|es|es)A = -2 0 5 1 1 O

» ' -1 -6 -5 -3 2

-1 11 0 -9 -3

Lemma 10.3. The product of two permutation matrices is a permutation matriz.

Lemma 10.4. (i) The determinant of any permutation matriz is either 1 or —1.
Thus, any permutation matriz is nonsingular.

(i1) Any permutation matriz is orthogonal, i.e., the inverse of any permutation matriz
is its transpose. In other words, if P is a permutation matriz, then P~ = Pt,

10.1.3 Orthogonality

Definition 10.2. Two vectors of the same size are orthogonal if and only if their
inner product is equal to 0.
In other words, two vectors w and v of the same size are orthogonal if and only if

(u,v) = v'u = 0.

Definition 10.3. A square matriz is orthogonal’ if and only if any two different
columns of the matriz are orthogonal and the norm of every column is equal to 1.*
In other words, the n x n matriz Q@ = col(qr),_,,,, %5 orthogonal if and only if

(g0 35) =g =0, V1<j#k<mn; (10.12)
lal>=da=1, Vi=1:n. (10.13)

Theorem 10.2. A square matrixz is orthogonal if and only if its transpose matriz is
also its inverse matriz.
In other words, the square matriz Q is orthogonal if and only if

Q'Q = QQ° =1, (10.14)

i.e., if and only if
Q' =Q" (10.15)

Proof. Let @ = col (qx),_;., b€ @ square matrix of size n. Then,

Qt’ = TOow (q]tg)k:hn = row (q;)]zln

Recall from (1.13) that the (4, %) entry of the matrix Q*Q is given by

@G, k) = gagr, V1<j,k<n. (10.16)

3Th1‘0ughout this book, we require, by definition, that any column of an orthogonal matrix
has norm equal to 1. An orthogonal matrix with the properties from Definition 10.3 is also called
an orthonormal matrix. -

4Note that any two rows of an orthogonal matrix are also orthogonal, and the norm of every
row of an orthogonal matrix is equal to 1; c¢f. Lemma 10.5.
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Since the identity matrix I has all entries equal to 0 except for the entries on
its main diagonal which are equal to 1, and using (10.16), (10.12), and (10.13), we
obtain that

Q@G35 =1, Vi=1l:n

t .
Ga =0, V1I<j#k<n
{qéqizl, Vi=1:n

QQ=1 < {(thz)(j,k)=o, Vi<j#k<n

(gr,0)) = gige =0, V1<j#k<n
= { llal)? =glgs =1, Vi=1:n (10.17)

From (10.17) and Definition 10.3, we conclude that Q*Q = I if and only if the
matrix () is orthogonal.

Then, from Lemma 1.6, it follows that Q° = Q™" and QQ* = I. O

Lemma 10.5. A square matriz is orthogonal if and only if any two different rows
of the matriz are orthogonal and the norm of every row is equal to 1.

Proof. Let @ =r1ow (r;);_,,, be an n X n orthogonal matrix. Then,

Qt = col (T§)j=1:n = col (Ti)k’:hn.

From Theorem 10.2, it follows that @ is an orthogonal matrix if and only if
QQ' = I. Note that the (4, k) entry of QQ* is given by
(QRNGK) = mrk, V1<jk<n
see (1.13). Then,
t 1 (QRQY(G,k) =0, V1<j#k<m
QU =1 { QNG =1, Yi=1:n

t .
rire =0, VI<j#k<m
= {7’;7"1‘:1, Vi=1:n.

(Tkarj):Tz'f'k:O, VlSJ;é]CSn,
= { l|[rs||? =riri =1, Vi=1:n.

We conclude that the matrix @ is orthogonal if and only if any two rows of Q are
orthogonal and the norm of every row of @ is equal to 1. a

Lemma 10.6. The product of two orthogonal square matrices of the same size is an
orthogonal matriz.

Proof. Let Q = Q1Q2, where @1 and Q2 are orthogonal matrices of the same size.
Since Qi Q1 = I and Q4Q2 = I, we obtain that

QR'Q (Q1Q2)'Q1Q2 = Q3Q1Q1Q2
RLUAIQ)Q:2 = Q4Q2

i

and, from Theorem 10.2, we conclude that the matrix ) is orthogonal. [
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‘Lemma 10.7. Multiplying a vector by an orthogonal matriz does not change the
Euclidean norm of the vector.

In other words, if Q is an n X n orthogonal matriz and v is a column vector of
size n, then ‘

[Qull = [[v]l. ' (10.18)

Proof. Let @ be an orthogonal matrix. Then, Q*Q = I, see Theorem 10.2, and
therefore

1Qull2 = (Qu,Qv) = (Qu)'Qv = v'Q'Qv = v'v = |||

O

Lemma 10.8. Any eigenvalue of an orthogonal matric has absolute value equal to
1.

Proof. Let A be an eigenvalue of the orthogonal matrix @, and let v # 0 be the
corresponding eigenvector; note that A could be a complex number. Then, Qv = Av,
and, from (10.18), we obtain that

ol = {[Qull = [l = [A] [[]].

Since ||v|} # 0, it follows that |A| = 1. O

10.1.4 Quadratic forms

Lemma 10.9. Let A = (A(4,k))jk=1:n be a square matriz of size n, and let © =
(z:)i=1:n ond y = (ys)i=1:n be two column vectors of size n. Then,

YAz = Z A, k)y;zk. (10.19)
1<5,k<n
Also,
Az = > A(,k)zme (10.20)
1<j,k<n

Proof. Let A = col(ax);_,., be the column form of A. Then,
Az = >z (10.21)
k=1
see (1.7). Since ax = (A(4,k)) ;1. We find from (1.5) that

var = D UAxk). (10.22)

3=1
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From (10.21) and (10.22), we obtain that
yt (Z -’Ekak) = Zyt . (a:kak)
k=1 k=1

= imk Ay ax), (10.23)
k=1

y Az

i

where the equality from (10.23) comes from the fact that xx is scalar (i.e., a number)
and y* and aj are vectors.
From (10.22) and (10.23), we conclude that

y Az = Y a (ZyjA(j,k)>
k=1 i=1

n

k=17

A(]> k)yjmk‘
1<5,k<n

1l

Thus, (10.19) is proved, and (10.20) follows from (10.19) by letting y = . O

From (10.20), we obtain that

AL = > A(j,k), (10.24)

1<4,k<n
where 1 is the n X 1 column vector with all entries equal to 1.
Note that, if D = diag(dk)r=1:» is a diagonal matrix, it follows from (10.20) that
e'Dz = Y dz}, Yz R (10.25)
k=1

Definition 10.4. Let A = (A(j, k))j,k=1:n be a square matriz of sizen. The quadratic
form ga : R™ — R associated with the matriz A is defined as

qa(z) = z'Az, (10.26)
or, equivalently, as
(@) = Y Al k)i (10.27)
cf. (10.20).

From (10.27), it follows that the quadratic form ga(z) can also be written as

qa(@) = Y_AGDZ + D (AGK) + Ak, 7). (10.28)

j=1 1<j<k<n
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Theorem 10.3. (i) For any square matriz A,

QA(Z‘) = gat (:Z),

i.e., the quadratic forms associated to a square matriz and its transpose are equal.
Moreover,

aals) = ga' (A+ A%z, (10.29)

(i) If A and B are square matrices of the same size, then

ga(z) =qp(z) <= A+A'=B+ B (10.30)

(iii) For every square matriz A of size n there exists a unique symmetric matric M
of size n such that

qa(@) = qm(z).

Note that, from (10.30), it follows that different matrices may have identical quadratic
forms.

Proof. (i) For any = € R", the value of the quadratic form ga evaluated at z is a
number, i.e., ga(z) € R. Then, ga(z) = (ga(x))*, which can be written as

qa(z) = 2'Az = (qa(z))* = (thm)t = z'A'z = que(x).

Thus, ga(z) = ga:{x) and therefore

4@ = 5@ +au @)

%— (m‘Am + a:tAt:L')

1
imt (A+ At) z.

il

(i) From (10.28), it follows that ga(z) = ¢s(z) if and only if

n

STAGHE + Y (AGK) + Ak, 5))zimk (10.31)
j=1 1<j<k<n
_ 5 B(,f)z2 + Y, (B(,k)+ B(k,j))zsmk, Yz eR™. (10.32)

1 1<i<k<n

<.

By identifying the coefficients of z;xg, for all 1 < j < k < n and of az?, for all
j=1:n, from (10.31) and (10.32), we find that ga = g5 if and only if

A(j,5) = B(@.4), Y1<ji<my (10.33)
A(j, k) + Ak, ) B(j,k)+ B(k,7), V1<j<k<n. (10.34)

i

Note that (10.33) and (10.34) are equivalent to saying that the matrices A + A°
and B + B! are equal. We conclude that ¢a = gp if and only if A+ At = B+ B
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(iii) Let M be a symmetric matrix. Then, M t = M, and, using (10.30), we find that

qalz) = qu(z) <= A+A' =M+ M
= A+ A'=2M
A+ A

«— M= .
2

Thus, the only symmetric matrix M such that ga = gum is M = A—‘;—’ﬁ. O

Theorem 10.4. (i) The gradient and Hessian of the quadratic form ga : R — R
associated to the n x n matriz A are

D(ga(@) = ((A+4")"; (10.35)
D?*(qa(z)) = A+ AL (10.36) -
(ii) If A is a symmetric matriz, then
D(ga(z)) = 2(Az)"; (10.37)
D*(qa(z)) = 2A. (10.38)

Proof. A proof of this result can be found in section 10.2.1; see Theorem 10.5. O

10.2 Mathematical tools

10.2.1 Multivariable functions

The material in this section is adapted from Stefanica [36]; see section 1.6 therein for
more details.

Scalar Valued Functions

Let f : R® — R be a function of n variables z1, 3, . . ., &, and let z = (z1, 22, . .. , Tn).
If the function f(x) is differentiable with respect to all the variables z;, i = 1: n,
then the gradient of f(z) is the following 1 X n row vector:

Df(z) = <g£—(x) %(m) %(m)). (10.39)

If the function f(z) is twice differentiable with respect to all variables z;, zx, with
1 < 4,k < n, then the Hessian of f(z) is the following n X n matrix:

8? 8% 8%f

%(w) 61?2255131 (.’L‘) PN E—TnzTa«l-(m)

o o f 3%f
Ox10z2 (m) ) 'é-cg(x) *tt Dzn Oz (ZE)

D*f(z) = (10.40)

82 0%y o f
8z10xn ( ) 6w26f$n (m) U %?:(x)
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In other words,

2 _ »f
D%f(z) = ( Sactn, (a:)>15j’ksn. C(10.41)

Note that, for all j = 1:n, it follows from (10.39) that

p(3w) - (L@ 2L@ .. i ‘<x>>,

6$1$j 8$2$j

and therefore

D (55 (@) 2L ()
) D (&5 @) o (z)
D*f(z) = . D 2.
D(g’{;(x)) o ()
= D((Df(=)"). (10.42)

Lemma 10.10. Let C = (¢;)i=1:n be an n X 1 column vector of real constants, and
let x = (x:)i=1:n be a column vector of n variables. Then,

D(C'z) = CY ' (10.43)
Di'C) = C% (10.44)
D*(C'z) = 0; (10.45)
D*z'C) = o, (10.46)

where 0 denotes an n X n matriz with all entries equal to 0.
Proof. Note that
Clz = z'C = Zcia:i;
i=1

cf. (1.5), and let f: R™ — R given by

flx) = Z Cii.

Then,
of ) 8 f )
= Ci, =1:n;, ———=0 <hk<n.
axz(x) ¢, Vi=1:n Bay0n 0. V1<jik<n
From (10.39) and (10.40), it follows that
Df(z) = (c1 ¢z ... cn) = C% D*f(z) = 0.

O

Theorem 10.5. (i) Let A be an n X n symmetric matric and let x = (€;)i=1.n e a
column vector of n variables. The gradient and Hessian of ' Ax are

D(s'Az) = 2(Az)’; (10.47)
D® (z'Az) = 24. (10.48)
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(i) Let A be a square matriz. The gradient and Hessian of * Az are

D(z'4z) = ((A+AY2)"; (10.49)
D®(z'Az) = A+ A% (10.50)
Proof. (i) Let A be an n X n symmetric matrix, and let f : R™ — R given by
f(z) = z'Ax.
Let 4 fixed, with 1 <4 < n. From (10.20), we find that
@ = Y Alpwm,
1<l,p<n
= AGd)zf + Y. AGpmz, + Y Al dzms (10.51)
p=lin,p#i l=1:n,l#i
+ Z A(l,p)z12p. (10.52)

1<L,p<n, i, p#i

By differentiating (10.51-10.52) with respect to z;, and noting that A({,p) =
A(p, 1) since A is a symmetric matrix, we find that

of

o (®) = 240w + > 4A(i,p):r;p + > 'A(l,i)ml

p=1in,p#£i =1, l#4

= 243,z + Y, APz, + Y, Alpdzp
p=Llin,ps#i p=1n,p7#i

= 2A(,0w + ) (A(p)+ A9z
p=1:n,pF#i

= 24(,)z + 2 . Al,p)p
p=1:n,psi

= 2> A(i,p)zp. (10.53)

p=1

From (1.8), it follows that the i-th entry of the vector 2Ax, where 1 <4 < mn, is
given by

(24z) (i) = 2> A(i,p)zp. (10.54)
p=1
From (10.53) and (10.54), we conclude that
of _ ) L
8_:m(m) = (24z)(3), Vi=1:n,

and therefore, from (10.39), we obtain that

i@ = (fLw o . ZLw)

((24z)(1) (24z)(2) ... (24z)(n))
= 2(Ax)".

i
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To compute the Hessian of f(z) = z'Az, let j and k fixed, with 1 < 7,k < n.
From (10.20), we find that

f@ = > Alpaz,

1<tl,p<n
= (A3, k) + Alk; §))zjoe + > A(f, k) vy
1<Lp<n;(Lp) (4. k)i (L) #(k,5)
= 2A(j, kK)zjzr + Z A(j, k)zizp,

1<LpSni(Lp)#(d k) (Lp)#(k,5)
since A is a symmetric matrix and therefore A(j,k) = A(k, 7). Then,

o f
3mkaajj

(z) = 24(5,k),

and, from (10.41), it follows that

D*f(z) = ( o' (a:)) = QAGR) e e = 24
Ozr0x; 1<), k<n 1M1, k<n ‘

(ii) Let A be an n X n matrix. Recall from (10.28) that

ga(z) = z*dz = %mt(A—kAt)x. (10.55)

Note that A+ A is a symmetric matrix, since
(A+ AN = A" (4 = A' 4+ A
Then, from (10.47) and (10.48), we find that

D (z*(A + A")z) 2 ((A+ AYz)"; (10.56)
D*(z'(A+ANz) = 2(A+ AY. (10.57)
From (10.55), (10.56), and (10.57), we conclude that

D(z'Az) = £ D(zY(A+AY) = ((A+A4A%2)5

N = N =

D*(z'Az) = = D*(2'(A+AYz) = A+ A%

Vector Valued Functions

Let F : R® — R™ be a vector valued function given by

fi(z)
fa(z)

f(@)
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where £ = (z1,%2,...,Tn).
If the functions f;(z), 7 = 1 : m, are differentiable with respect to all variables
%, 4 = 1 : m, then the gradient DF'(z) of the function F'(z) is the following matrix

of size m X n:

@) @) .. ()
D) @) L@ ... i) 1058
‘,L' = . . . . N *
Ym@) 2@ ... Fr@)

If #:R” — R", then the gradient DF(x) is an n X n square matrix.
Note that the j-th row of the gradient matrix DF(x) is equal to the gradient
Df;(z) of the function f;(z), j = 1:m; cf. (10.39) and (10.58). Therefore,

D f1(z)
Df(z)

DF(z) = (10.59)

Dfm(z)

Lemma 10.11. Let M be anmxn matriz. The gradient of the vector valued function
Mz, taking x € R™ into Mxz € R™ is

D(Mz) = M. (10.60)
Proof. Let M = row (r;) be the row form of M. From (1.8), it follows that the
Mz can be written as®

j=lim

T
T2
Mgz = N (10.61)
Tm
From (10.59) and (10.61), it follows that
D(riz)
D(rox)
D(Mz) = . (10.62)
D(T.ma:)
From (10.43), we find that
D(rjz) = r;, Vi=1:m. (10.63)
Then, from (10.62) and (10.63), we conclude that
71
T2
D(Mz) = ) = 10w (1j) e = M.
rm
O

SNote that r; is the result of the multiplication of the row vector r; by the column vector z,
and therefore a real number, for every j = 1 : m; see also (1.5).
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We note that the result of Lemma 10.11 can be used to prove (10.50). Recall from
(10.42) that D?f(z) = D (D f(z))"). Then, using (10.49) and (10.60), we find that

D?(s*Az) = D((D(a'A4z))") = D((A+A"2)
= (A+AY.

10.2.2 Lagrange multipliers

Expanded coverage of the Lagrange multipliers method can be found in Chapter 9
of Stefanica [36].

The Lagrange multipliers method is used to find extrema of multivariable functions
subject to various constraints.

Let U C R™ be an open set, and let f : U — R be a smooth function, e.g.,
infinitely many times differentiable. We want to find the extrema of f(z) subject to
m constraints given by g(x) = 0, where g : U — R™ is a smooth function, i.e.,

Find 2o € U such that

max  f(z) = f(xo) or min  f(z) = f(zo). (10.64)
g(@) = 0 9(@) = 0
zeU zeU

A point o € U satisfying (10.64) is called a constrained extremum point of the
function f(z) with respect to the constraint function g{x). For problem (10.64) to
be well posed, we assume the number of constraints is smaller than the number of
the degrees of freedom, i.e., m < n.

To solve the constrained optimization problem (10.64), let A = (X)izi:m be a
column vector of the same size, m, as the number of constraints; X is called the
Lagrange multipliers vector.

The Lagrangian associated to problem (10.64) is the function F' : U X R™ — R
given by

F(z,\) = f(x) + A g(z). (10.65)

g1(z)
If g(z) = : , then F'(x,A) can be written explicitly as

gm(z)
F(z,A) = f(z) + Z)\zgl(x)

In the Lagrange multipliers method, the constrained extremum point z is found
by identifying the critical points of F(z,\). A necessary condition for using the
Lagrange multipliers method is that the gradient Dg(x) must have has full rank at
any point z where the constraint g(z) = 0 is satisfied, i.e.,

rank(Dg(z)) = m, Y z € U such that g(z) =0. (10.66)
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Denote by Dz 5y F(w, A) the gradient of F(x, A) with respect to both z and A. In
other words, D(. x) F(x,)) is the following (row) vector:

Dy F(2,) = ( DuF(z,)) DyF(z,)) ) = (ggﬁgziggi) . (1067)

Recall from (10.39) that

oF OF
D, F(z,\) = <6:c1(x A) . ém_n(x’/\)) ; (10.68)
OF OF
and note that
oF _ of 0gi -
5, (z,N) = B = (z) + Z;)\ B, (), Vj=1:m (10.70)
OF —(z,\) = ¢lz), Vi=1:m. (10.71)
O\
Then, from (10.67-10.71), it follows that
t
oo (@) 32 (@) + L N ) ‘
(:v A) 25 (z) + z’.“ N2 ()
Dz F .’,U,)\ = = Oy, i=1 " 0xp
o FEN = e ole)
BAm (:E A) gm ()

The following theorem gives necessary conditions for a point o € U to be a
constrained extremum point for f(z):

Theorem 10.6. Assume that the function g(z) satisfies condition (10.66). If xo € U
is a constrained extremum point of f(x) with respect to the constraint g(x) = 0, then
there exists a Lagrange multiplier Ao € R™ such that the point (o, Xo) is a critical
point for the Lagrangian function F(z, ), i.e

De,5y F(mo, do) = 0. (10.72)

To find sufficient conditions for a critical point (zo, Ao) of the Lagrangian F(z, )
to correspond to a constrained extremum point zo for f(z), consider the function
Fy: U — R given by

Fo(z) = F(z,20) = f(z) + Xg().
Let D?Fo(wo) be the Hessian of Fo(x) evaluated at the point zg, i.e.,

2 2
aamF? (@o) 61263:1( To) ... afngzl (z0)
_B__F_Q_(mo) Q_lgg(xo) . _QZ_ED_(mO)
D*Folmo) = | 0% ‘%2. fenOea ;o (10.73)

62F‘ 82 F, - azp.
811627,, (o) amagn (zo) ... —;Qamn (o)
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see (10 40). Note that D®Fy(zo) is an n x n symmetric matrix.

We restrict our attention to the case when the matrix D?Fo(wo) is either symmetric
positive definite, or symmetric negative definite, which suffices for the purpose of this
book. The general theory of Lagrange multipliers can be found in section 9.1 from
Stefanica [36]; see Theorem 9.2 therein.

Theorem 10.7. Assume that the function g(x) satisfies condition (10.66). Let 2o €
U C R™ and Mo € R™ such that the point (To, \o) is a critical point for the Lagrangian
function F(z,\) = f(z)+ Mg(z). Let Fo(z) = f(z) + Aog(z), and let D?Fo(xo) be
the Hessian of Fy evaluated at the point xo.

If the matriz D 2 Fo(xo) is positive definite, i.e., if all the eigenvalues of the matmm
D%Fy(x0) are strictly greater than 0, then xo is a constmzned minimum for f(z) with
respect to the constraint g(z) = 0.

If the matriz D*Fo(zo) is negative definite, i.e., if all the eigenvalues of the matriz
D?Fo(mo) are strictly less than 0, then zo s a constrained mazimum for f(z) with
respect to the constraint g(z) = 0.

Summarizing, the steps for solving the simplified version of a constrained opti-
mization problem using Lagrange multipliers are:
Step 1: Check that rank(Dg(z)) = m for all « such that g(z) = 0.
Step 2: Find (20, Xo) € U x R™ such that D, xF(zo, do) = 0.

Step 3: Check whether the matrix D?Fo(xo) is positive semidefinite or negative
semidefinite.

Step 4: Use Theorem 10.7 to decide whether z¢ is a constrained minimum point or
a constrained maximum point.

The Lagrange multipliers method is used, for example, for portfolio optimization
problems; see sections 9.3, 9.4, and 9.5 for details.

10.2.3 The “Big O” notation

In this book, the “Big O” notation is primarily used for polynomials; a formal defi-
nition can be found below. More details on the general form of the “Big O” notation
can be found in Section 10.5 of Stefanica [36].

Definition 10.5. Let f : R — R, and let k be a positive integer. We write that
f(n) = O(n*), asn — oo, if and only if there exist constants C1,C2 > 0 and M >0
such that

1 < -——k—) < Cq Vnz M.
n
In particular, note that
if 0 < lim 1) < oo, then f(n)=0(®"), asn — oo (10.74)
nooo | nk ’ - ’ : ’
Let

; -1
E @z’ = apx’ + ap-12’ 4 ...+ a1z + ao,
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with ap # 0, be a polynomial of degree p. Then, from (10.74), it follows that
P(n) = O(n?), asmn — oo.
More precisely, if ap—1 # 0, then,
P(n) = apz® + O®*™'), asn — oco. (10.75)

To prove, e.g., (10.75), note that

2

1 -
lim P(n) — apz? lim ap—1mPT Fap_anf T+ ..+ ain 4 ao
n—oco np—1 n-—oo np—l
. Ap—2 al ag
P
= lim lap_l—}— + 5+ ‘
n—oo n np— np—1

= |ap-1| > 0O,

and therefore P(n) — ap,z? = O(nP™1); cf. (10.74)
The results below follow from (10.75) and are used in the book:

8n—7 = 8n + O(1), asn — oo (10.76)

10n—-7 = 10n+0O(1), asn— o (10.77)

n*+n—-1 = n® + O(n), asn— oo; (10.78)

%§_§+5—67£_1 = gn + O(n®), asn — oo; (10.79)
n® n? n 1 3 2

—3—+—§—+g = 3" + O(n®), asn— oo (10.80)

Rules for operations with the “Big O” notations can be derived from Defini-
tion 10.5 and are as follows:

If k and j are positive integers and ¢ # 0 is a constant, then

cen’Om®) = Om*), asn— oo (10.81)
cOm® = o@mF), asn— oo (10.82)
On*y +en* = 0@F), asn— oo; (10.83)
O@*)+ 0 = 0@, asn— oo (10.84)
Om*)+ 0@ = 0mF), ifj<k asn— oo (10.85)
The following results can be proved using (10:81—10.84):
As . — 00,
(§n3 + O(n2)> +2(n*+0(mn) = gn?’ +0(n?) + 2n? + 20(n)
2
= 37’ +0(n*)+0(n)
_ §n3 + O(n?); (10.86)
1
<3n3 +0(n )) +2n? +0(n)) = %n3 + O(n?); (10.87)
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%ns +0(n”) + n(2n® +20(n)) = —g-n?’ + O(n*) + 2n0(n)
- §n3 + O +0(n?)

= %ns + O(n?); (10.88)

%na +0(n* + n(2n®+20(n)) = gn?’ + O(n?). (10.89)

10.3 European options overview

The material in this section is adapted from Stefanica [36]; see sections 1.7-1.10 and
3.7 therein for more details.

A Call Option on an underlying asset (e.g., on one share of a stock, for an equity
option®) is a contract between two parties which gives the buyer of the option the
right, but not the obligation, to buy from the seller of the option one unit of the
asset (e.g., one share of the stock) at a predetermined time T in the future, called
the maturity of the option, for a predetermined price K, called the strike of the
option. For this right, the buyer of the option pays C(t) at time ¢ < T to the seller
of the option.

A Put Option on an underlying asset is a contract between two parties which
gives the buyer of the option the right, but not the obligation, to sell to the seller
‘of the option one unit of the asset at a predetermined time T in the future, called
the maturity of the option, for a predetermined price K, called the strike of the
option. For this right, the buyer of the option pays P(t) at time ¢ < T to the seller
of the option.

The options described above are plain vanilla European options. An option which
can be exercised at any time prior to maturity is called an American option.

Let S(t) be the price of the underlying asset at time £. A call option is at—the-
money (ATM) if its strike is equal to the spot price, i.e., if K = S(¢). Similarly,
a put option is at—-the-money (ATM) if its strike is equal to the spot price, i.e., if
K = S(t). A call option is in—the-money (ITM) or out—of-the-money (OTM) at
time ¢t if S(¢) > K or S(t) < K, respectively. A put option is in—the-money or
out-of-the-money at time ¢ if S(¢) < K or S(t) > K, respectively.

The payoff of a.call option at maturity is

S(T)- K, if S(T) > K;
C(T) = max(S(T) — K,0) = { ( )0, ;f SET% c K (10.90)
The payoff of a put option at maturity is
_ _ 0, if S(T) > K;
P(T) = max(K — S(T),0) = { K- S(1), it S(T) < K. (10.91)

The Put—Call parity

5The underlying asset for equity options is usually 100 shares, not one share. For clarity and
simplicity reasons, we will be consistent throughout the book in our assumption that options are
written on just one unit of the underlying asset.
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The no—arbitrage values of European call and put options with the same strike and
maturity satisfy a model-independent relationship called the Put—Call parity. The
intuition behind the Put—Call parity is that a long call and a short put position in
options with the same strike and maturity is the same as a long position in a forward
contract on the underlying asset of the options with the same expiration date as the
maturity of the options and with delivery price equal to the strike of the options.
More formally, if C(t) and P(t) are the values at time ¢ of a European call and
put option, respectively, with maturity T and strike K, on the same underlying asset
with spot price S(t), paying dividends continuously at the rate ¢, the Put—Call parity
states that
Ct) — P(t) = S(t)e™ Tt — ge="T7, (10.92)

A proof of (10.92) based on the Law of One Price can be found in section 1.9 of
Stefanica [36].
The Black—Scholes formulas

The Black—Scholes formulas give the price of plain vanilla European call and put
options under the assumptions that the price of the underlying asset has lognormal
distribution with volatility o, the asset pays dividends continuously at the rate g,
and the risk—free interest rate is constant and equal to 7. The Black—Scholes values
Cps(S,t) and Pus(S,t) of a call option and of a put option, respectively, with strike
K and maturity T are given by

C(S,t) = Se T UN(d) — Ke " T I N(da); (10.93)

P(S,t) = Ke "T"ON(—d3)— Se” T IN(~dy), (10.94)

where

m($) + (r—a+ 2) (1)

4 = — (10.95)
In (£ —q— ) (T -
do = di—oVT—1 = (&) + (r 7)Y (10.96)

oI —1t ’

and N(z) denotes the cumulative distribution of the standard normal variable, i.e.,

z 22
N(z) = \/-—12_7—? / e 7 dux.

Options Greeks

The Greeks are the sensitivities of the options prices with respect to various param-
eters, e.g., with respect to the price of the underlying asset or with respect to the
volatility of the underlying asset, and are important for hedging purposes.

From the Black—Scholes formulas (10.93) and (10.94) for options on assets paying
continuous dividends, the following closed formulas for the Greeks of European plain
vanilla call and put options can be derived: .

oc
oS
oP

AP) = 5= = —e” T N(—dy); (10.98)

A(C) e " TYN(dy); (10.97)
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ry = £¢ _e Y -4 (10 Y
| = e e 2 .
05% So+/2n(T — t) )4
8°P : '
I(P) = 5oz = I(O); (10.100)
_ a3
vega(C) = %f_ = G 9T TQWte—'%~ (10.101)
vega(P) = g—f = vega(C). (10.102)

10.4 Eigenvalues of symmetric matrices

In this section, we provide an elegant proof of the fact that any eigenvalue of a sym-
metric matrix with real entries is a real number; cf. Theorem 5.1 and Theorem 10.8.

To do so, we introduce an extension of the inner product (5.3), also called the
Euclidean inner product, to vectors with complex entries.

Definition 10.6. Let u = (Us)i=1in and v = (v;)i=1.n be column vectors of size n
with entries complex numbers, i.e., with u;,v; € C, fort = 1 : n. The complex
Euclidean inner product of v and v is”

k3
(u,v)c = WTT + U3 +... 4+ UnTp = Zui'z'i;, (10.103)
i=1
where T; denotes the complex conjugate of v;, fori=1:n.
Note that
(u,v)c = vy, (10.104)
where, by definition, v* = (o1 T2 ... Un) = (T7)i=1:n is the row vector whose entries
are the complex conjugates of the entries of the vector v = (v;)i=1:n-

The following properties of the Euclidean complex inner product follow from def-
inition (10.103):

(w,v)e = (v,u)e, Yu,veC? (10.105)
(cu,v)c = e(u,v)c, Yu,veC" ceC; (10.106)
(u,cv)e = Eu,v)e, Yu,velC”, ceC. (10.107)

Definition 10.7. The Euclidean norm of a vector v = (vi)i=1.n € C" is

n
Do lwill2
i=1

"Note that, if the entries of v and v are real numbers, i.e., if u;,v; € R for all ¢ = 1 : n, then
the complex Euclidean inner product is equal to the inner product given by (5.3):

ki n
(U')'U)C = Zuiv_‘i = Zuwi = (u,'u).
i=1 i=1

= /(v,0)c = Vvru. (10.108)
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Definition 10.8. Let A be an m X n matriz with complex entries. The hermitian of
the matriz A is the n X m matriz A* given by ~

A% (4, k) = A(k,j), Vk=1:n, j=1:m.

Lemma 10.12. The hermitian of a matriz with real entries is the transpose of the
matriz.

Proof. Let A be an m x n matrix with real entries. Then, A(j,k) = A(j, k), and
therefore

A*(k,j) = A(,k) = A5, k) = AYk,5), YVi=1:m, k=1:n.  (10.109)
From (10.109), we conclude that A* = A*. O

The properties below are similar to those from Lemma 1.1 and Lemma 1.2 for the
transpose of a matrix, and can be proved similarly: -
For any m X n matrix A,
(4" = A (10.110)
For any m X n matrix A, n X p matrix B, and column vector v of size n,
(Av)" = 'A% (10.111)
(AB)* = B*A". (10.112)

Lemma 10.13. Let A be a square matriz of size n with complex entries, and let u
and v be column vectors of size n with complex entries. Then,

(Au,v)c = (u,A%v)g; (10.113)
(u, Av)e = (A'u,v)e. (10.114)

Proof. Recall from (10.111) that (Av)* = v*A*. Since (A™)* = A, see (10.110), we
find that (A*v)* = v™(A")" = v" A. Then, using (10.104), we obtain that

(Au,v)c = v'4u = (W Au = (A"v)"u = (u,A™v)g;
(u,Av)e = (Av)'u = v"'A%u = v"(A™) = (A"u,v)c.

‘We can now prove Theorem 5.1 from Section 5.1:

Theorem 10.8. Any eigenvalue of a symmetric matriz with real entries is a real
number.

Proof. Let A be a square matrix of size n with real entries, and assume that A is
symmetric, i.e., A* = A. Let A € C and v € C™ be an eigenvalue and a corresponding

eigenvector of A. Then, Av = v, and, using (10.106) and (10.108), we find that

(Av,v)c = (Ww,v)c = Mu,v)ec = Av||a. (10.115)
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Since the matrix A has real entries, it follows from Lemma 10.12 that A* = A%
Note that A® = A, since A is a symmetric matrix. Therefore, we obtain that A* = A.
Then, from (10.113) and using (10.107), we find that 7

(Av,v)c = (v,A")c = (v, Av)c = (v, W) = A(v,v)c
= Aplle. (10.116)
From (10.115) and (10.116), it follows that
Mol = Tl (10.17)

Note that ||v|| # 0, since v is an eigenvector of the matrix A, and therefore v # 0.
Then, from (10.117), we obtain that A = X, which happens if and only if A € R.

We conclude that any eigenvalue of the symmetric matrix A with real entries is a
real number. , d

10.5 Row rank equal to column rank

The column rank and the row rank of a matrix A are defined as the largest number
of linearly independent columns of A, and the largest number of linearly independent
rows of A, respectively. It is important to note that the column rank and the row
rank of a matrix are always the same, not only for square matrices, but also for
rectangular matrices; see Lemma 10.14.

The author is indebted to Professor Gilbert Strang for the elegant proof below.

Lemma 10.14. For any matriz A,
colrank{A) = rowrank(A),

where colrank(A) and rowrank(A) are the column rank and the row rank of a matriz
A, respectively.

Proof. Let A be an m X n matrix with column form A = col(ax),_;.,- Let p be
the column rank of A. By definition, there exist p columns of A which are linearly
independent vectors and such that every column of A is a linear combination of these
p columns. Assume, without any loss of generality, that these p columns are the first
p columns of A, i.e., a1, az, ..., ap. Then, for every k with 1 < k < n, there exist
constants cix, with 1 < ¢ < p, such that®

V4
ax = Y ciwai, Yh=1:n. (10.118)

i=1

Let Ap = col (“i)i=1:p be the m X p matrix with columns a1, az, ..., ap, and let
C be the p x n matrix given by

C11 C12 e Cin

C21 C22 e Cop
C =

Cpl1 Cp2z ... Cpn

8For 1 < k < p, note that ¢y, = 1l and ¢;6x =0 forall 1 < i # k< p.
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Let C = col (wg) 1., be the column form of the matrix C, where wr = ,

Cpk
for all k=1:n. Since A, = col(a:),_,.,, we obtain using the matrix-column vector
multiplication formula (1.7) that (10 118) can be written as

P Cik Cik
ar = > cwai = (ar] ... |ap)| = col (ai);_1,,
=1 Cpk Cpk
= Apwg, Vk=1:n. (10.119)

Then, from the matrix—matrix multiplication formula (1.11) and (10.119), we obtain
that
A = col(ar)y_ym = col(Apwr)y_,,, = Apcol (Wk)y 1.,
= A,C. : (10.120)
Let A = row (r:),_,., be the row form of A, and let C = row (¢;);-,., be the row

form of C. From (10.120) and using the matrix-matrix multiplication formula (1 12),
it follows that

ZAp(z‘,ﬁcj, Vi=1:p.

j=1
In other words, every row of the matrix A is a linear combination of the p vectors ¢1,
€2, .., Cp. Then, by definition, the row rank of the matrix A is less than or equal to

p, the column rank of A.
We therefore showed that; for any matrix A,

rowrank(A) < colrank(A). (10.121)

In particular, the inequality (10.121) also holds for the matrix A*, i.e

rowrank(A") < colrank(A"). (10.122)
Note that

rowrank(A") = colrank(A); (10.123)

colrank(A") = rowrank(A), (10.124)

since the rows of A® are the columns of A, and thé columns of A are the rows of A*.
Then, from (10.122-10.124), we find that

colrank(A) < rowrank(A4). (10.125)
From (10.121) and (10.125) we conclude that

rowrank(A) = colrank(A).
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10.6 Technical results for the Cholesky and LU
decompositions

This section contains the proofs of several technical results related to the existence
and uniqueness of the Cholesky decomposition for symmetric positive definite matri-
ces and of the LU decomposition; see section 2.4 and section 6.1 for details.

Lemma 10.15. Let A be an n x n matriz with A(1,1) > 0, and let An_1 = A(2:
n,2:n). Then,

\/A(].,].) 0 1 . o AL, 1 A(1,2:m)
A = < A2ntl) g (0 Ay — AGnDAQ2m) > (1) VALY |

A(L,1) 0 In—1

A(LL) n-l
where I,_1 is the (n — 1) x (n~— 1) identity matriz, and 0 is the column vector of size
n — 1 with all entries equal to 0.

Proof. By using block matrix multiplication, we find that

1 Ot / A 1,2:n)
( 0 A = A(2n,1)A(L,2:n) ) ( A(l 1)

A(L,1) n—1

A(l 1) A(1,2:n)
_ < A(1,1) )
_A@m1A(Q2:n )
0 Ap—1 A(1,1)
Then, using block matrix multiplication once again, we obtain that
A(1,1) 0 ¢ M
( (1,1) )(1 0 )(,/ s

A(2:m,1) A(2:n,1)A(1,2in
\/A_(Tﬁ In-a 0 An-1 = =500 In-1

¢ A(1,1 A(1,2:n)
< A(2:n,1) 2n1 0 ) ( (4,1 \A/Az(l,ll))A(12 : )
1 0 An-1 - A(1,1)
A(l 1) A(1,2:n)
A(2:n, 1) AZmDAQLEN) 4 4, AGRDAGZ)
A

A(L,1)

A(L, 1) A(1,2:n)> _ ( A(LD A(1,2:n) >

A2:n Ap—1 A(2:n,1) A(2:n,2:n)

which is what we wanted to prove. 0

Lemma 10.16. Let A be a symmetric positive definite matriz, and let B be a non-
singular matriz of the same size as A. Then, the matriz B'AB is also symmetric
posttive definite.

Proof. The matrix BtAB is symmetric, since (B*AB)" = B*A*(B')" = B'AB.
Let z € R™, where n is the size of the square matrix A. Then,

¢'B'ABz = (Bx)'ABz = 4'Ay, ' (10.126)




312 CHAPTER 10. MATHEMATICAL AND TECHNICAL APPENDIX

where y = Bzx. Since A is symmetric positive definite, it follows from (5.17) that
y'Ay >0, VyeR" (10.127)
YAy =0 <= y=0. (10.128)
Then, from (10.126) and using (10.127-10.128), we obtain that
2'B'ABz > 0, V2 eR"; (10.129)

'B'ABr =0 <— y'Ay=0 < y=0 < Bx=0 < =0, (10.130)

where the last equivalence follows from the fact that B is a nonsingular matrix.
From (10.129) and (10.130), we conclude that the matrix B*AB is symmetric
positive definite. O

Lemma 10.17. Let A be ann X n symmelric positive matriz, and let An_1 = A(2
n,2:n). Then, the matriz

A _(A(1,2:n))"A1,2:n)
nt AL 1)
18 symmetric positive definite.

Proof. Note that, since A is a symmetric matrix, A(2:n,1) = (A(1,2 : n))*. Then,
from Lemma 10.15, we find that

A(17 1) Ot .1 Ot A 1’ 1 A(L,2:n)
A={ dazat po g 4 - aGamtacem L LY Jaan
VA(1L,1) e n—1— yYEHY) 0 A
which can be written as
t 1 ot
A= M| g 4 oeetaaas | M (10.131)
A(1,1)

A(l,2:n)
VAL zvewT]
O In——l
with all entries equal to 0. Note that M is a nonsingular matrix, since M is upper
triangular and det(M) = A(1,1) # 0; cf. (10.4).
Multiply (10.131) to the left by (M*)~* and to the right by M ~* and obtain that

where M = and O denotes the column vector of size n — 1

ty—1 -1 1 0° ‘
(M°)""AM™ = (Agzm)ta@zn) |- (10.132)
0 Anr = =50y

Recall from Lemma 1.8 that (M*)™' = (M™")*. Let B = M~*. Then, (10.132)
can be written as

t 1 0t
BAB = | o 4., - mw_z%zz_n) : (10.133)
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Let z = ( 93 0 ) € R", where z,_1 € R™!. Using (10.133), we obtain that

n—1
z"B*ABx ' (10.134)
1 ot 0
= 0 fo~ A(L2:n))P A(1,2:n ( )
( 1) ( 0 A, - 40 2A()1),1)(12 ) P
o _(AQQ,2: n))*A(1,2:n)
= Zhn_1 <An_1 A1) Tp_1. (10.135)

Since A is a symmetric positive definite matrix, it follows from Lemma 10.16 that
the matrix B*AB is also symmetric positive definite. Thus,

z*B*ABx > 0, Yz, € R" (10.136)
t'B'ABz =0 <= z=0. (10.137)
Then, from (10.134-10.137), it follows that

‘ (A(1,2 :n))*4(1,2 : n)
Tp—1 (An—l - A(L 1)

)mn_l > 0, Vaou_1 e R™™Y

Tho1 <An_1 _ (AQ,2: n))*A(1,2: n)

A(l,l) ):Crml =0 <= 1xp-1=0,

and we conclude that the matrix An-1 — ﬁé_(l_zgz_)lf_{“)_wl is symmetric positive
definite. O

We include below a proof by induction of the fact that every symmetric positive
definite matrix has a Cholesky decomposition; see also Theorem 6.1.

Theorem 10.9. Any symmetric positive definite matrixz has a Cholesky decomposi-
tion.

Proof. We give a proof by induction. Assume that any symmetric positive definite
matrix of size n — 1 is diagonalizable. We will show that any symmetric positive
definite matrix of size n is also diagonalizable.

Let A be an n X n symmetric positive definite matrix. Then, A(2: n,1) = (A(1,2:
n))t, and, from Lemma 10.15, we find that

VAL o 1 0 VAT 1‘11—2—”1
= §A£112m22i Tt 0 A (AQL2m)EA(L2in) ( A(l b))
VA1) ™ n—1 AL Iy
(10.138)

where In_1 is the (n —~ 1) X (n — 1) identity matrix, and 0 is the column vector of
size n - 1 with all entries equal to 0.

Recall from Lemma 10.17 that An—1 — Sﬂm%——f‘)(——l—’—z—’ﬁl isan (n—1) x (n — 1)
symmetric positive definite magrix. Then, from the induction hypothesis, it follows
that there exists an (n — 1) X (n — 1) upper triangular matrix U,_1 with positive

entries on the main diagonal such that

(A(L,2:n))*'A(L,2:n) _
An—l - A(].,].) - n—lUn—l-
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Thus,
1 0* (10.139)
A(1,2:n))t A(1,2:n ’
0 A1 -— (—L‘-z%
- 0 U:L_.1Un—1
1 0 1 0
_ ( - ) ( , ) (10.140)
Note that
AL o 1 o AL O
( (A(1,2:n))¢ In_1 (0 Ut ) = (AQ2m)" Ut : (10'141)
VAQD T n-1 VA(L,1) nt
. 161 1 A(l?n) A 1. A(1,2in)
( 1 0 > v ( JAGD _ VAL VAGLD ). (10.142)
0 Un~1 In 1 0 Un—-l

From (10.138-10.142), we obtain that

A(L,1) o ¢ ¢ JAT 1) Al2n)
A = (A 1,(2:71,]2 I ( 1 (t] )( 1 0 > ( ’ ) Vv A(1,1)
\/m n—1 0 Un—l 0 Un—-l 0 In——l
VAQLD o /A, 1) ﬂ”_"l
= < (A(1,2:0))t Ut ( A(l 1)
VAL n-l Un-1
= UpUn,
m Agl 2:n)
where U,, = Z}‘\(l 1) is an 1 X n upper triangular matrix. Note that
n—1

the main diagonal entnes of U, are positive entries, since U,_1 was assumed to have
positive entries on the main diagonal.
Thus, we showed that the matrix A has the Cholesky decomposition A = ULU,,.

We conclude by induction that any symmetric positive definite matrix has a Cholesky
decomposition. O

Theorem 10.10. If it exists, the LU decomposition without row pivoting of a matriz
18 uNique.

Proof. We give a proof by contradiction. Assume that the n X n nonsingular matrix
A has two LU decompositions without row pivoting, i.e., assume that

A= L1U1 and A= L2U2,

where Ly and Lz are lower triangular matrices with entries equal to 1 on the main
diagonal and U: and Uz are nonsingular upper triangular matrices. Then,

LUy = Lolhs. (10.143)
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Note that, by definition, L1, L2, U1, and U, are nonsingular matrices; see Defini-
tion 2.1. Multiply (10.143) by L, ' on the left'and by U;* on the right and obtain

Lyt (Iath) Uyt = L3'- (LaUs) - UT!
e (L;'L) - (U;Y) = (L3'L2) - (U2UTH)
— L' = UUY, (10.144)

since U1U;* =1 and Ly 'Ly = I.

Recall from Lemma 1.17 that the inverse of a lower triangular matrix is lower tri-
angular, and the inverse of an upper triangular matrix is upper triangular, and, from
Lemma 1.15, that the product of two lower triangular matrices is lower triangular,
and the product of two upper triangular matrices is upper triangular. Thus, the ma-
trix L3 ! is lower triangular and therefore the matrix Ly 1L, is also lower triangular.
Similarly, the matrix U] Vis upper triangular and therefore the matrix Us Uy !is also
upper triangular. Since the matrices Ly 'L, and VU are equal, see (10.144), it
follows that they must be diagonal matrices.

Let D = diag(dx)r=1:» be a diagonal matrix such that

D = ;'L = DU (10.145)
By multiplying D = Ly 'L to the left by Lo, we find that

LoD = Ly (L3'Ly) = (L;'Ls)-Ln = L. (10.146)
Let Lz = col (l,(cz))h . From Lemma 1.10, we obtain that
k=1:n
LD = col (dkz@)) . (10.147)
k k=ln

Recall that all the diagonal entries of the matrices L1 and L, are equal to 1.
From (10.147), it follows that the k-th diagonal entry of the matrix LoD is di, for
all k = 1:n. Since Ly D = Ly, see (10.148), and since all the diagonal entries of L;
are equal to 1, we obtain that di = 1 for all k = 1 : n, and therefore the matrix D is
the identity matrix, i.e., D = I.

Then, from (10.145), we find that

I = L;'Ly = UU L

Thus, L1 = Ly and U; = Us, and we conclude that the LU decomposition of the
matrix A is unique. 0

10.7 More technical results

We include here the proof of Lemma 1.17 stating that the inverse of a triangular
matrix is triangular of the same type:

Lemma 10.18. (i) The inverse of an upper triangular matriz is upper triangular.

(i1) The inverse of a lower triangular matriz is lower triangular.
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Proof. (i) Let U = col (uk);._,., Pe a nonsingular upper triangular matrix and. let
B = col (bx)4.,., be the inverse matrix of U. Then,

BU = UB = I. (10.148)

From (1.11), we obtain that BU = col (Bug),_,.,- Since I = col(ex)j=1.,» We find
from (10.148) that
Bup = ex, Vh=1:n. (10.149)

Let k = 1 in (10.149). Then, Bu, = e;. Since U is upper triangular, it follows
from (1.107) that u1(2) = 0, for all 2 <4 <n. Thus,

e1 = Bu; = Zul(i)bi = U1(1)b1,

g=1

and therefore .

= r(l)el.

Note that u1(1) = U(1,1) # 0 since U is nonsingular; cf. Lemma 1.16.

We conclude that all the entries of the first column of the matrix B with the
exception of the first entry are equal to 0, i.e., the first column of the matrix B
satisfies the equivalent definition (1.107) of an upper triangular matrix.

We show by (complete) induction that all the columns of the matrix B satisfy
property (1.107).

Let k such that 2 < & < n. Assume that the columns b4, ..., brx—1 satisfy property
(1.107), i.e., .
bi(j) =0, Vi=1:(k—1), Vi+1<j<n. (10.150)

Since U is upper triangular, we also find from (1.107) that
ur(i) =0, Vk+1<i<n. (10.151)

Recall from (10.149) that Bux = ex. From (1.7) and (10.151), it follows that

n k
ex = Bup = Zuk(i)bi = Zuk(i)bi
i=1 i=1

k-1

= ur(k)br + Zuk(i)bia

=1

and therefore

kol

1 k—1 . :
b, = D) (ek - ;uk(z)bi>. (10.152)

Note that ux(k) = U(k, k) # 0 since U is nonsingular; cf. Lemma 1.16.

Let j such that £+ 1 < j < n. Then, ex(j) = 0, and, for any 1 < ¢ < k — 1,
b:(j) = 0 as well, from the induction hypothesis (10.150).

Then, from (10.152), it follows that bx(j) = 0 for any k+1 < 5 < n, and therefore
that the column by also satisfies property (1.107).
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By induction, we conclude that all the columns of the matrix B satisfy property
(1.107), and therefore that B is an upper triangular matrix.

(ii) Let L be a nonsingular lower triangular matrix, and let L7 be the inverse matrix
of L. Then, by definition,

L' =L07'L = I (10.153)
By transposing (10.153) and using (1.24), we obtain that
(Lml)t Lt — Lt (L—l)t - TI.

Thus, (I,71)* is the inverse matrix of L?, which is an upper triangular matrix.

We already proved that the inverse of an upper triangular matrix is upper trian-
gular. It then follows that (L ™) is an upper triangular matrix, and we therefore
conclude that L' is a lower triangular matrix. (W

The result below was used to establish (9.90) in section 9.6:
Lemma 10.19. If Z is a standard normal variable, then
P(Z<—-a) = 1-P(Z<a), Ya€eR.
Proof. Recall that |
P(Z < ~a) = \/——12;7;/_: e_% dz, (10.154)

[N

z

since the probability density function of the standard normal variable Z is \/%e 7
see (7.109). Using the substitution z = —y in (10.154), we find that

a (__ 22 o0 2
P(Z < —a) \/15;/ e (—dy) = \/%_W/ e T dy

|

1 ¢ 42
= 1 - —= e 7 d
\/27(/_00 Y
= 1 - P(Z<a),

which is what we wanted to show. Note that, for the third equality above, we used
the fact that

_1__/ W _}_/we—%‘id _ _1_/°°e—*"§d1 _
V2T J oo Y Vo Ja Y Vo2 J_eo v ’

42
since the integral over (—o0,00) of the probability density \/%e_‘% of Z is equal to
1. 0
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10.8 Exercises

1. Show that :
1 a a2
det | 1 b ¥ = (c—a)(c—-b)(b—a),
1 ¢ ¢

where a,b,c € R.

Note: A matrix of the form

1 a ¢ ... !t
2 n—1
1 ¢c2 ¢35 ... cg
. 3
1 ¢ 2 ... !t
where c¢1, c2, ..., ¢, are constants, is called a Vandermonde matrix. The

determinant of the Vandermonde matrix is equal to

IT (ci—cw).

1<k<j<n

2. Show that any orthogonal matrix has determinant 1 or —1. In other words,‘
show that, for any orthogonal matrix Q, either det(Q) = 1, or det(Q) = —1.

3. Let My and Ms be n X n symmetric matrices. Show that, if
' Miz = z'Mez, V€ R”,

then M1 = MQ.

4. Show that the quadratic form of a matrix is 0 if and only if the matrix is
skew—symmetric, i.e., show that

ga(z) =0 ifand only if A’ = —A.
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